Cargando…

Capacity of tTreg generation is not impaired in the atrophied thymus

Postnatal thymic epithelial cell (TEC) homeostatic defect- or natural aging-induced thymic atrophy results in a decline in central T-cell tolerance establishment, which is constituted by thymocyte negative selection and cluster of differentiation (CD) 4(+) thymic regulatory T (tTreg) cell generation...

Descripción completa

Detalles Bibliográficos
Autores principales: Oh, Jiyoung, Wang, Weikan, Thomas, Rachel, Su, Dong-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695848/
https://www.ncbi.nlm.nih.gov/pubmed/29117183
http://dx.doi.org/10.1371/journal.pbio.2003352
Descripción
Sumario:Postnatal thymic epithelial cell (TEC) homeostatic defect- or natural aging-induced thymic atrophy results in a decline in central T-cell tolerance establishment, which is constituted by thymocyte negative selection and cluster of differentiation (CD) 4(+) thymic regulatory T (tTreg) cell generation. Emerging evidence shows this decline mainly results from defects in negative selection, but there is insufficient evidence regarding whether tTreg cell generation is also impaired. We mechanistically studied tTreg cell generation in the atrophied thymus by utilizing both postnatal TEC-defective (resulting from FoxN1-floxed conditional knockout [cKO]) and naturally aged mouse models. We found that the capacity of tTreg cell generation was not impaired compared to CD4(+) thymic conventional T cells, suggesting thymic atrophy positively influences tTreg cell generation. This is potentially attributed to decreased T cell receptor (TCR) signaling strength due to inefficiency in promiscuous expression of self-antigens or presenting a neo-self-antigen by medullary TECs, displaying decreased negative selection-related marker genes (Nur77 and CD5(high)) in CD4 single positive (SP) thymocytes. Our results provide evidence that the atrophied thymus attempts to balance the defective negative selection by enhancing tTreg cell generation to maintain central T-cell tolerance in the elderly. Once the balance is broken, age-related diseases could take place.