Cargando…
Probing spatial heterogeneity in silicon thin films by Raman spectroscopy
Raman spectroscopy is a powerful technique for revealing spatial heterogeneity in solid-state structures but heretofore has not been able to measure spectra from multiple positions on a sample within a short time. Here, we report a novel Raman spectroscopy approach to study the spatial heterogeneity...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707398/ https://www.ncbi.nlm.nih.gov/pubmed/29185465 http://dx.doi.org/10.1038/s41598-017-16724-4 |
Sumario: | Raman spectroscopy is a powerful technique for revealing spatial heterogeneity in solid-state structures but heretofore has not been able to measure spectra from multiple positions on a sample within a short time. Here, we report a novel Raman spectroscopy approach to study the spatial heterogeneity in thermally annealed amorphous silicon (a-Si) thin films. Raman spectroscopy employs both a galvano-mirror and a two-dimensional charge-coupled device detector system, which can measure spectra at 200 nm intervals at every position along a sample in a short time. We analyzed thermally annealed a-Si thin films with different film thicknesses. The experimental results suggest a correlation between the distribution of the average nanocrystal size over different spatial regions and the thickness of the thermally annealed a-Si thin film. The ability to evaluate the average size of the Si nanocrystals through rapid data acquisition is expected to lead to research into new applications of nanocrystals. |
---|