Cargando…
Molecular mechanisms and physiological roles of Atg5/Atg7-independent alternative autophagy
ATG5 and ATG7 are considered to be essential molecules for the induction of autophagy. However, we found that cells lacking ATG5 or ATG7 can still form autophagosomes/autolysosomes and perform autophagic protein degradation when subjected to certain types of stress. Although the lipidation of LC3 is...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Japan Academy
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5709538/ https://www.ncbi.nlm.nih.gov/pubmed/28603209 http://dx.doi.org/10.2183/pjab.93.023 |
Sumario: | ATG5 and ATG7 are considered to be essential molecules for the induction of autophagy. However, we found that cells lacking ATG5 or ATG7 can still form autophagosomes/autolysosomes and perform autophagic protein degradation when subjected to certain types of stress. Although the lipidation of LC3 is accepted as a good indicator of autophagy, this did not occur during ATG5/ATG7-independent alternative autophagy. Unlike conventional autophagy, autophagosomes appeared to be generated in a Rab9-dependent manner by the fusion of the phagophores with vesicles derived from the trans-Golgi and late endosomes. Therefore, mammalian autophagy can occur via at least two different pathways; the ATG5/ATG7-dependent conventional pathway and an ATG5/ATG7-independent alternative pathway. |
---|