Cargando…
Cell cycle time series gene expression data encoded as cyclic attractors in Hopfield systems
Modern time series gene expression and other omics data sets have enabled unprecedented resolution of the dynamics of cellular processes such as cell cycle and response to pharmaceutical compounds. In anticipation of the proliferation of time series data sets in the near future, we use the Hopfield...
Autores principales: | Szedlak, Anthony, Sims, Spencer, Smith, Nicholas, Paternostro, Giovanni, Piermarocchi, Carlo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711035/ https://www.ncbi.nlm.nih.gov/pubmed/29149186 http://dx.doi.org/10.1371/journal.pcbi.1005849 |
Ejemplares similares
-
Control of Asymmetric Hopfield Networks and Application to Cancer Attractors
por: Szedlak, Anthony, et al.
Publicado: (2014) -
Evolutionary and Topological Properties of Genes and Community Structures in Human Gene Regulatory Networks
por: Szedlak, Anthony, et al.
Publicado: (2016) -
Digital Cell Sorter (DCS): a cell type identification, anomaly detection, and Hopfield landscapes toolkit for single-cell transcriptomics
por: Domanskyi, Sergii, et al.
Publicado: (2021) -
Polled Digital Cell Sorter (p-DCS): Automatic identification of hematological cell types from single cell RNA-sequencing clusters
por: Domanskyi, Sergii, et al.
Publicado: (2019) -
Balancing Robustness against the Dangers of Multiple Attractors in a Hopfield-Type Model of Biological Attractors
por: Anafi, Ron C., et al.
Publicado: (2010)