Cargando…
Hydrogen and the Light-Induced Bias Instability Mechanism in Amorphous Oxide Semiconductors
Hydrogen is known to be present as an impurity in amorphous oxide semiconductors at the 0.1% level. Using amorphous ZnO as a simplified model system, we show that the hydrogens pair up at oxygen vacancies in the amorphous network, where they form metal-H-metal bridge bonds. These bonds are shown to...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714999/ https://www.ncbi.nlm.nih.gov/pubmed/29203820 http://dx.doi.org/10.1038/s41598-017-17290-5 |
Sumario: | Hydrogen is known to be present as an impurity in amorphous oxide semiconductors at the 0.1% level. Using amorphous ZnO as a simplified model system, we show that the hydrogens pair up at oxygen vacancies in the amorphous network, where they form metal-H-metal bridge bonds. These bonds are shown to create filled defect gap states lying just above the valence band edge and they are shown to give a consistent mechanism to explain the negative bias illumination stress instability found in oxide semiconductors like In-Ga-Zn-O (IGZO). |
---|