Cargando…
An excitable Rho GTPase signaling network generates dynamic subcellular contraction patterns
Rho GTPase-based signaling networks control cellular dynamics by coordinating protrusions and retractions in space and time. Here, we reveal a signaling network that generates pulses and propagating waves of cell contractions. These dynamic patterns emerge via self-organization from an activator–inh...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716289/ https://www.ncbi.nlm.nih.gov/pubmed/29055010 http://dx.doi.org/10.1083/jcb.201706052 |
_version_ | 1783283921203494912 |
---|---|
author | Graessl, Melanie Koch, Johannes Calderon, Abram Kamps, Dominic Banerjee, Soumya Mazel, Tomáš Schulze, Nina Jungkurth, Jana Kathrin Patwardhan, Rutuja Solouk, Djamschid Hampe, Nico Hoffmann, Bernd Dehmelt, Leif Nalbant, Perihan |
author_facet | Graessl, Melanie Koch, Johannes Calderon, Abram Kamps, Dominic Banerjee, Soumya Mazel, Tomáš Schulze, Nina Jungkurth, Jana Kathrin Patwardhan, Rutuja Solouk, Djamschid Hampe, Nico Hoffmann, Bernd Dehmelt, Leif Nalbant, Perihan |
author_sort | Graessl, Melanie |
collection | PubMed |
description | Rho GTPase-based signaling networks control cellular dynamics by coordinating protrusions and retractions in space and time. Here, we reveal a signaling network that generates pulses and propagating waves of cell contractions. These dynamic patterns emerge via self-organization from an activator–inhibitor network, in which the small GTPase Rho amplifies its activity by recruiting its activator, the guanine nucleotide exchange factor GEF-H1. Rho also inhibits itself by local recruitment of actomyosin and the associated RhoGAP Myo9b. This network structure enables spontaneous, self-limiting patterns of subcellular contractility that can explore mechanical cues in the extracellular environment. Indeed, actomyosin pulse frequency in cells is altered by matrix elasticity, showing that coupling of contractility pulses to environmental deformations modulates network dynamics. Thus, our study reveals a mechanism that integrates intracellular biochemical and extracellular mechanical signals into subcellular activity patterns to control cellular contractility dynamics. |
format | Online Article Text |
id | pubmed-5716289 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-57162892018-06-04 An excitable Rho GTPase signaling network generates dynamic subcellular contraction patterns Graessl, Melanie Koch, Johannes Calderon, Abram Kamps, Dominic Banerjee, Soumya Mazel, Tomáš Schulze, Nina Jungkurth, Jana Kathrin Patwardhan, Rutuja Solouk, Djamschid Hampe, Nico Hoffmann, Bernd Dehmelt, Leif Nalbant, Perihan J Cell Biol Research Articles Rho GTPase-based signaling networks control cellular dynamics by coordinating protrusions and retractions in space and time. Here, we reveal a signaling network that generates pulses and propagating waves of cell contractions. These dynamic patterns emerge via self-organization from an activator–inhibitor network, in which the small GTPase Rho amplifies its activity by recruiting its activator, the guanine nucleotide exchange factor GEF-H1. Rho also inhibits itself by local recruitment of actomyosin and the associated RhoGAP Myo9b. This network structure enables spontaneous, self-limiting patterns of subcellular contractility that can explore mechanical cues in the extracellular environment. Indeed, actomyosin pulse frequency in cells is altered by matrix elasticity, showing that coupling of contractility pulses to environmental deformations modulates network dynamics. Thus, our study reveals a mechanism that integrates intracellular biochemical and extracellular mechanical signals into subcellular activity patterns to control cellular contractility dynamics. The Rockefeller University Press 2017-12-04 /pmc/articles/PMC5716289/ /pubmed/29055010 http://dx.doi.org/10.1083/jcb.201706052 Text en © 2017 Graessl et al. http://www.rupress.org/terms/https://creativecommons.org/licenses/by-nc-sa/4.0/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Research Articles Graessl, Melanie Koch, Johannes Calderon, Abram Kamps, Dominic Banerjee, Soumya Mazel, Tomáš Schulze, Nina Jungkurth, Jana Kathrin Patwardhan, Rutuja Solouk, Djamschid Hampe, Nico Hoffmann, Bernd Dehmelt, Leif Nalbant, Perihan An excitable Rho GTPase signaling network generates dynamic subcellular contraction patterns |
title | An excitable Rho GTPase signaling network generates dynamic subcellular contraction patterns |
title_full | An excitable Rho GTPase signaling network generates dynamic subcellular contraction patterns |
title_fullStr | An excitable Rho GTPase signaling network generates dynamic subcellular contraction patterns |
title_full_unstemmed | An excitable Rho GTPase signaling network generates dynamic subcellular contraction patterns |
title_short | An excitable Rho GTPase signaling network generates dynamic subcellular contraction patterns |
title_sort | excitable rho gtpase signaling network generates dynamic subcellular contraction patterns |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716289/ https://www.ncbi.nlm.nih.gov/pubmed/29055010 http://dx.doi.org/10.1083/jcb.201706052 |
work_keys_str_mv | AT graesslmelanie anexcitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT kochjohannes anexcitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT calderonabram anexcitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT kampsdominic anexcitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT banerjeesoumya anexcitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT mazeltomas anexcitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT schulzenina anexcitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT jungkurthjanakathrin anexcitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT patwardhanrutuja anexcitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT soloukdjamschid anexcitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT hampenico anexcitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT hoffmannbernd anexcitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT dehmeltleif anexcitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT nalbantperihan anexcitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT graesslmelanie excitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT kochjohannes excitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT calderonabram excitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT kampsdominic excitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT banerjeesoumya excitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT mazeltomas excitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT schulzenina excitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT jungkurthjanakathrin excitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT patwardhanrutuja excitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT soloukdjamschid excitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT hampenico excitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT hoffmannbernd excitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT dehmeltleif excitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns AT nalbantperihan excitablerhogtpasesignalingnetworkgeneratesdynamicsubcellularcontractionpatterns |