Cargando…

Microfluidic hydrodynamic focusing synthesis of polymer-lipid nanoparticles for siRNA delivery

Small interfering RNAs (siRNAs) are promising as therapeutics for intractable diseases such as cancer. However, efficient and safe delivery of siRNAs in vivo remains a challenge. Polymer-lipid hybrid nanoparticles (P/LNPs) have been evaluated for therapeutic delivery of siRNA. In this study, a micro...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Xueqin, Lee, Robert J., Qi, Yuhang, Li, Yujing, Lu, Jiahui, Meng, Qingfan, Teng, Lesheng, Xie, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722526/
https://www.ncbi.nlm.nih.gov/pubmed/29228574
http://dx.doi.org/10.18632/oncotarget.18281
Descripción
Sumario:Small interfering RNAs (siRNAs) are promising as therapeutics for intractable diseases such as cancer. However, efficient and safe delivery of siRNAs in vivo remains a challenge. Polymer-lipid hybrid nanoparticles (P/LNPs) have been evaluated for therapeutic delivery of siRNA. In this study, a microfluidic hydrodynamic focusing (MF) system was used to prepare P/LNPs loaded with VEGF siRNA. P/LNPs made by MF were smaller in particle size and had narrower size distribution compared to P/LNPs formed by bulk mixing (BM). MF-synthesized P/LNPs demonstrated low vehicle cytotoxicity and potent tumor cell inhibition in vitro. In addition, P/LNPs produced by the microfluidic chip exhibited prolonged blood circulation and increased AUC after i.v. injection compared to free siRNA. Furthermore, P/LNPs synthesized by MF induced greater down-regulation of VEGF mRNA and protein levels as well as greater tumor inhibition in a xenograft tumor model. Taken together, P/LNPs prepared by MF have been shown to be an effective and safe therapeutic siRNA delivery system for cancer treatment both in vitro and in vivo.