Cargando…

Insulin in motion: The A6-A11 disulfide bond allosterically modulates structural transitions required for insulin activity

The structural transitions required for insulin to activate its receptor and initiate regulation of glucose homeostasis are only partly understood. Here, using ring-closing metathesis, we substitute the A6-A11 disulfide bond of insulin with a rigid, non-reducible dicarba linkage, yielding two distin...

Descripción completa

Detalles Bibliográficos
Autores principales: van Lierop, Bianca, Ong, Shee Chee, Belgi, Alessia, Delaine, Carlie, Andrikopoulos, Sofianos, Haworth, Naomi L., Menting, John G., Lawrence, Michael C., Robinson, Andrea J., Forbes, Briony E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722942/
https://www.ncbi.nlm.nih.gov/pubmed/29222417
http://dx.doi.org/10.1038/s41598-017-16876-3
_version_ 1783285110129295360
author van Lierop, Bianca
Ong, Shee Chee
Belgi, Alessia
Delaine, Carlie
Andrikopoulos, Sofianos
Haworth, Naomi L.
Menting, John G.
Lawrence, Michael C.
Robinson, Andrea J.
Forbes, Briony E.
author_facet van Lierop, Bianca
Ong, Shee Chee
Belgi, Alessia
Delaine, Carlie
Andrikopoulos, Sofianos
Haworth, Naomi L.
Menting, John G.
Lawrence, Michael C.
Robinson, Andrea J.
Forbes, Briony E.
author_sort van Lierop, Bianca
collection PubMed
description The structural transitions required for insulin to activate its receptor and initiate regulation of glucose homeostasis are only partly understood. Here, using ring-closing metathesis, we substitute the A6-A11 disulfide bond of insulin with a rigid, non-reducible dicarba linkage, yielding two distinct stereo-isomers (cis and trans). Remarkably, only the cis isomer displays full insulin potency, rapidly lowering blood glucose in mice (even under insulin-resistant conditions). It also posseses reduced mitogenic activity in vitro. Further biophysical, crystallographic and molecular-dynamics analyses reveal that the A6-A11 bond configuration directly affects the conformational flexibility of insulin A-chain N-terminal helix, dictating insulin’s ability to engage its receptor. We reveal that in native insulin, contraction of the C(α)-C(α) distance of the flexible A6-A11 cystine allows the A-chain N-terminal helix to unwind to a conformation that allows receptor engagement. This motion is also permitted in the cis isomer, with its shorter C(α)-C(α) distance, but prevented in the extended trans analogue. These findings thus illuminate for the first time the allosteric role of the A6-A11 bond in mediating the transition of the hormone to an active conformation, significantly advancing our understanding of insulin action and opening up new avenues for the design of improved therapeutic analogues.
format Online
Article
Text
id pubmed-5722942
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-57229422017-12-12 Insulin in motion: The A6-A11 disulfide bond allosterically modulates structural transitions required for insulin activity van Lierop, Bianca Ong, Shee Chee Belgi, Alessia Delaine, Carlie Andrikopoulos, Sofianos Haworth, Naomi L. Menting, John G. Lawrence, Michael C. Robinson, Andrea J. Forbes, Briony E. Sci Rep Article The structural transitions required for insulin to activate its receptor and initiate regulation of glucose homeostasis are only partly understood. Here, using ring-closing metathesis, we substitute the A6-A11 disulfide bond of insulin with a rigid, non-reducible dicarba linkage, yielding two distinct stereo-isomers (cis and trans). Remarkably, only the cis isomer displays full insulin potency, rapidly lowering blood glucose in mice (even under insulin-resistant conditions). It also posseses reduced mitogenic activity in vitro. Further biophysical, crystallographic and molecular-dynamics analyses reveal that the A6-A11 bond configuration directly affects the conformational flexibility of insulin A-chain N-terminal helix, dictating insulin’s ability to engage its receptor. We reveal that in native insulin, contraction of the C(α)-C(α) distance of the flexible A6-A11 cystine allows the A-chain N-terminal helix to unwind to a conformation that allows receptor engagement. This motion is also permitted in the cis isomer, with its shorter C(α)-C(α) distance, but prevented in the extended trans analogue. These findings thus illuminate for the first time the allosteric role of the A6-A11 bond in mediating the transition of the hormone to an active conformation, significantly advancing our understanding of insulin action and opening up new avenues for the design of improved therapeutic analogues. Nature Publishing Group UK 2017-12-08 /pmc/articles/PMC5722942/ /pubmed/29222417 http://dx.doi.org/10.1038/s41598-017-16876-3 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
van Lierop, Bianca
Ong, Shee Chee
Belgi, Alessia
Delaine, Carlie
Andrikopoulos, Sofianos
Haworth, Naomi L.
Menting, John G.
Lawrence, Michael C.
Robinson, Andrea J.
Forbes, Briony E.
Insulin in motion: The A6-A11 disulfide bond allosterically modulates structural transitions required for insulin activity
title Insulin in motion: The A6-A11 disulfide bond allosterically modulates structural transitions required for insulin activity
title_full Insulin in motion: The A6-A11 disulfide bond allosterically modulates structural transitions required for insulin activity
title_fullStr Insulin in motion: The A6-A11 disulfide bond allosterically modulates structural transitions required for insulin activity
title_full_unstemmed Insulin in motion: The A6-A11 disulfide bond allosterically modulates structural transitions required for insulin activity
title_short Insulin in motion: The A6-A11 disulfide bond allosterically modulates structural transitions required for insulin activity
title_sort insulin in motion: the a6-a11 disulfide bond allosterically modulates structural transitions required for insulin activity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722942/
https://www.ncbi.nlm.nih.gov/pubmed/29222417
http://dx.doi.org/10.1038/s41598-017-16876-3
work_keys_str_mv AT vanlieropbianca insulininmotionthea6a11disulfidebondallostericallymodulatesstructuraltransitionsrequiredforinsulinactivity
AT ongsheechee insulininmotionthea6a11disulfidebondallostericallymodulatesstructuraltransitionsrequiredforinsulinactivity
AT belgialessia insulininmotionthea6a11disulfidebondallostericallymodulatesstructuraltransitionsrequiredforinsulinactivity
AT delainecarlie insulininmotionthea6a11disulfidebondallostericallymodulatesstructuraltransitionsrequiredforinsulinactivity
AT andrikopoulossofianos insulininmotionthea6a11disulfidebondallostericallymodulatesstructuraltransitionsrequiredforinsulinactivity
AT haworthnaomil insulininmotionthea6a11disulfidebondallostericallymodulatesstructuraltransitionsrequiredforinsulinactivity
AT mentingjohng insulininmotionthea6a11disulfidebondallostericallymodulatesstructuraltransitionsrequiredforinsulinactivity
AT lawrencemichaelc insulininmotionthea6a11disulfidebondallostericallymodulatesstructuraltransitionsrequiredforinsulinactivity
AT robinsonandreaj insulininmotionthea6a11disulfidebondallostericallymodulatesstructuraltransitionsrequiredforinsulinactivity
AT forbesbrionye insulininmotionthea6a11disulfidebondallostericallymodulatesstructuraltransitionsrequiredforinsulinactivity