Cargando…

Caspase-4 is essential for saikosaponin a-induced apoptosis acting upstream of caspase-2 and γ-H2AX in colon cancer cells

Saikosaponin a (SSa), a bioactive phytochemical from Bupleurum, triggers sequential caspase-2 and caspase-8 activation, and thereby induces caspase-mediated apoptosis in human colon carcinoma (HCC) cells. However, the upstream mechanism of caspase-2 activation remains unknown. Therefore, we investig...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Su Jin, Lee, Young Joon, Kang, Sung Gu, Cho, Soyoung, Yoon, Wonsuck, Lim, Ji Hong, Min, Sang-Hyun, Lee, Tae Ho, Kim, Byeong Mo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725032/
https://www.ncbi.nlm.nih.gov/pubmed/29245990
http://dx.doi.org/10.18632/oncotarget.22247
Descripción
Sumario:Saikosaponin a (SSa), a bioactive phytochemical from Bupleurum, triggers sequential caspase-2 and caspase-8 activation, and thereby induces caspase-mediated apoptosis in human colon carcinoma (HCC) cells. However, the upstream mechanism of caspase-2 activation remains unknown. Therefore, we investigated the signaling mechanisms underlying SSa-induced caspase activation and apoptosis in HCC cells. SSa treatment triggered marked antitumor effects, especially in HCC cells, in a cell culture model and a mouse xenograft model. SSa also induced the activation of several endoplasmic reticulum (ER) stress signals. Specifically, caspase-4, a critical regulator of ER stress-induced apoptosis, was activated significantly after SSa treatment. Mechanistically, selective inhibition of caspase-4 suppressed SSa-induced apoptosis, colony inhibition, and the activation of caspase-3, -8, and -2, but not vice versa. Consistent with the important role of caspase-2 in the DNA damage response, SSa induced DNA damage, as evidenced by a cytokinesis-block micronucleus assay, single-cell gel electrophoresis, and an increase in the levels of γ-H2AX, a DNA damage marker. Moreover, inhibition of caspase-4 activation inhibited SSa-induced histone H2AX phosphorylation. Taken together, these results suggest that caspase-4 is an upstream regulator of SSa-induced DNA damage and caspase activation in HCC cells. Given that SSa-induced apoptosis appeared to be specific to certain cell types including HCC cells, SSa may be a promising cancer therapy agent in certain types of cancer.