Cargando…
Development of Decision Forest Models for Prediction of Drug-Induced Liver Injury in Humans Using A Large Set of FDA-approved Drugs
Drug-induced liver injury (DILI) presents a significant challenge to drug development and regulatory science. The FDA’s Liver Toxicity Knowledge Base (LTKB) evaluated >1000 drugs for their likelihood of causing DILI in humans, of which >700 drugs were classified into three categories (most-DIL...
Autores principales: | Hong, Huixiao, Thakkar, Shraddha, Chen, Minjun, Tong, Weida |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725422/ https://www.ncbi.nlm.nih.gov/pubmed/29229971 http://dx.doi.org/10.1038/s41598-017-17701-7 |
Ejemplares similares
-
Study of serious adverse drug reactions using FDA-approved drug labeling and MedDRA
por: Wu, Leihong, et al.
Publicado: (2019) -
Comprehensive Assessments of RNA-seq by the SEQC Consortium: FDA-Led Efforts Advance Precision Medicine
por: Xu, Joshua, et al.
Publicado: (2016) -
Deep Learning on High-Throughput Transcriptomics to Predict Drug-Induced Liver Injury
por: Li, Ting, et al.
Publicado: (2020) -
The FDA’s Experience with Emerging Genomics Technologies—Past, Present, and Future
por: Xu, Joshua, et al.
Publicado: (2016) -
Alchemical analysis of FDA approved drugs
por: Orsi, Markus, et al.
Publicado: (2023)