Cargando…

Favourable metabolic profile sustains mitophagy and prevents metabolic abnormalities in metabolically healthy obese individuals

BACKGROUND: Obesity-mediated oxidative stress results in mitochondrial dysfunction, which has been implicated in the pathogenesis of metabolic syndrome and T2DM. Recently, mitophagy, a cell-reparative process has emerged as a key facet in maintaining the mitochondrial health, which may contribute to...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhansali, Shipra, Bhansali, Anil, Dhawan, Veena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5728047/
https://www.ncbi.nlm.nih.gov/pubmed/29255491
http://dx.doi.org/10.1186/s13098-017-0298-x
Descripción
Sumario:BACKGROUND: Obesity-mediated oxidative stress results in mitochondrial dysfunction, which has been implicated in the pathogenesis of metabolic syndrome and T2DM. Recently, mitophagy, a cell-reparative process has emerged as a key facet in maintaining the mitochondrial health, which may contribute to contain the metabolic abnormalities in obese individuals. However, the status of mitophagy in metabolically healthy obese (MHO) and metabolically abnormal diabetic obese (MADO) subjects remains to be elucidated. Hence, the present study aims to unravel the alterations in mitochondrial oxidative stress (MOS) and mitophagy in these subjects. METHODS: 60 subjects including MHNO (metabolically healthy non-obese), MHO and MADO were enrolled as per the Asian criteria for obesity (n = 20 each). Biochemical parameters, MOS indices, transcriptional and translational expression of mitophagy markers (PINK1, PARKIN, MFN2, NIX, LC3-II, and LAMP-2), and transmission electron microscopic (TEM) studies were performed in peripheral blood mononuclear cells. RESULTS: The MHO subjects displayed a favorable metabolic profile, despite accompanied by an increased adiposity as compared to the MHNO group; while MADO group exhibited several metabolic abnormalities, inspite of similar body composition as MHO subjects. A progressive rise in the MOS was observed in MHO and MADO subjects as compared to the MHNO group, and it showed a positive and significant correlation with the body composition in these groups. Further, mitophagy remained unaltered in the MHO group, while it was significantly downregulated in the MADO group. In addition, TEM studies revealed a significant increase in the percentage of damaged mitochondria in MADO patients as compared to other groups, while MHO and MHNO groups did not show any significant alterations for the same. CONCLUSION: A favorable metabolic profile and moderate levels of MOS in the MHO group may play a crucial role in the sustenance of mitophagy, which may further limit the aggravation of MOS, inflammation, and emergence of metabolic aberrations in contrast to MADO subjects, who exhibited multiple metabolic abnormalities and attenuated mitophagy. Therefore, these MHO subjects are likely to be at a lower risk of developing metabolic syndrome and T2DM.