Cargando…

Sustained Activity of Metabotropic Glutamate Receptor: Homer, Arrestin, and Beyond

When activated, metabotropic glutamate receptors (mGlus) exert long-lasting changes within the glutamatergic synapses. One mechanism is a tonic effect of downstream signal transduction pathways via sustained activation of mGlu itself. Like many other G protein-coupled receptors (GPCRs), mGlu can exi...

Descripción completa

Detalles Bibliográficos
Autores principales: Chung, Geehoon, Kim, Sang Jeong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735635/
https://www.ncbi.nlm.nih.gov/pubmed/29359050
http://dx.doi.org/10.1155/2017/5125624
Descripción
Sumario:When activated, metabotropic glutamate receptors (mGlus) exert long-lasting changes within the glutamatergic synapses. One mechanism is a tonic effect of downstream signal transduction pathways via sustained activation of mGlu itself. Like many other G protein-coupled receptors (GPCRs), mGlu can exist in a constitutively active state, which persists agonist independently. In this paper, we review the current knowledge of the mechanisms underlying the constitutive activity of group I mGlus. The issues concerning Homer1a mechanism in the constitutive activity of group I mGlus and recent findings regarding the significant role of β-arrestin in sustained GPCR activity are also discussed. We propose that once in a state of sustained activation, the mGlu persistently activates downstream signaling pathways, including various adaptor proteins and kinases, such as β-arrestin and mitogen-activated protein kinases. In turn, these effector molecules bind to or phosphorylate the mGlu C-terminal binding domains and consequently regulate the activation state of the mGlu.