Cargando…
Specific reverse transcriptase slippage at the HIV ribosomal frameshift sequence: potential implications for modulation of GagPol synthesis
Synthesis of HIV GagPol involves a proportion of ribosomes translating a U6A shift site at the distal end of the gag gene performing a programmed -1 ribosomal frameshift event to enter the overlapping pol gene. In vitro studies here show that at the same shift motif HIV reverse transcriptase generat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737442/ https://www.ncbi.nlm.nih.gov/pubmed/28973470 http://dx.doi.org/10.1093/nar/gkx690 |
_version_ | 1783287518038327296 |
---|---|
author | Penno, Christophe Kumari, Romika Baranov, Pavel V. van Sinderen, Douwe Atkins, John F. |
author_facet | Penno, Christophe Kumari, Romika Baranov, Pavel V. van Sinderen, Douwe Atkins, John F. |
author_sort | Penno, Christophe |
collection | PubMed |
description | Synthesis of HIV GagPol involves a proportion of ribosomes translating a U6A shift site at the distal end of the gag gene performing a programmed -1 ribosomal frameshift event to enter the overlapping pol gene. In vitro studies here show that at the same shift motif HIV reverse transcriptase generates -1 and +1 indels with their ratio being sensitive to the relative concentration ratio of dNTPs specified by the RNA template slippage-prone sequence and its 5′ adjacent base. The GGG sequence 3′ adjacent to the U6A shift/slippage site, which is important for ribosomal frameshifting, is shown here to limit reverse transcriptase base substitution and indel ‘errors’ in the run of A’s in the product. The indels characterized here have either 1 more or less A, than the corresponding number of template U’s. cDNA with 5 A’s may yield novel Gag product(s), while cDNA with an extra base, 7 A’s, may only be a minor contributor to GagPol polyprotein. Synthesis of a proportion of non-ribosomal frameshift derived GagPol would be relevant in efforts to identify therapeutically useful compounds that perturb the ratio of GagPol to Gag, and pertinent to the extent in which specific polymerase slippage is utilized in gene expression. |
format | Online Article Text |
id | pubmed-5737442 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-57374422018-01-09 Specific reverse transcriptase slippage at the HIV ribosomal frameshift sequence: potential implications for modulation of GagPol synthesis Penno, Christophe Kumari, Romika Baranov, Pavel V. van Sinderen, Douwe Atkins, John F. Nucleic Acids Res Molecular Biology Synthesis of HIV GagPol involves a proportion of ribosomes translating a U6A shift site at the distal end of the gag gene performing a programmed -1 ribosomal frameshift event to enter the overlapping pol gene. In vitro studies here show that at the same shift motif HIV reverse transcriptase generates -1 and +1 indels with their ratio being sensitive to the relative concentration ratio of dNTPs specified by the RNA template slippage-prone sequence and its 5′ adjacent base. The GGG sequence 3′ adjacent to the U6A shift/slippage site, which is important for ribosomal frameshifting, is shown here to limit reverse transcriptase base substitution and indel ‘errors’ in the run of A’s in the product. The indels characterized here have either 1 more or less A, than the corresponding number of template U’s. cDNA with 5 A’s may yield novel Gag product(s), while cDNA with an extra base, 7 A’s, may only be a minor contributor to GagPol polyprotein. Synthesis of a proportion of non-ribosomal frameshift derived GagPol would be relevant in efforts to identify therapeutically useful compounds that perturb the ratio of GagPol to Gag, and pertinent to the extent in which specific polymerase slippage is utilized in gene expression. Oxford University Press 2017-09-29 2017-08-03 /pmc/articles/PMC5737442/ /pubmed/28973470 http://dx.doi.org/10.1093/nar/gkx690 Text en © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Molecular Biology Penno, Christophe Kumari, Romika Baranov, Pavel V. van Sinderen, Douwe Atkins, John F. Specific reverse transcriptase slippage at the HIV ribosomal frameshift sequence: potential implications for modulation of GagPol synthesis |
title | Specific reverse transcriptase slippage at the HIV ribosomal frameshift sequence: potential implications for modulation of GagPol synthesis |
title_full | Specific reverse transcriptase slippage at the HIV ribosomal frameshift sequence: potential implications for modulation of GagPol synthesis |
title_fullStr | Specific reverse transcriptase slippage at the HIV ribosomal frameshift sequence: potential implications for modulation of GagPol synthesis |
title_full_unstemmed | Specific reverse transcriptase slippage at the HIV ribosomal frameshift sequence: potential implications for modulation of GagPol synthesis |
title_short | Specific reverse transcriptase slippage at the HIV ribosomal frameshift sequence: potential implications for modulation of GagPol synthesis |
title_sort | specific reverse transcriptase slippage at the hiv ribosomal frameshift sequence: potential implications for modulation of gagpol synthesis |
topic | Molecular Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737442/ https://www.ncbi.nlm.nih.gov/pubmed/28973470 http://dx.doi.org/10.1093/nar/gkx690 |
work_keys_str_mv | AT pennochristophe specificreversetranscriptaseslippageatthehivribosomalframeshiftsequencepotentialimplicationsformodulationofgagpolsynthesis AT kumariromika specificreversetranscriptaseslippageatthehivribosomalframeshiftsequencepotentialimplicationsformodulationofgagpolsynthesis AT baranovpavelv specificreversetranscriptaseslippageatthehivribosomalframeshiftsequencepotentialimplicationsformodulationofgagpolsynthesis AT vansinderendouwe specificreversetranscriptaseslippageatthehivribosomalframeshiftsequencepotentialimplicationsformodulationofgagpolsynthesis AT atkinsjohnf specificreversetranscriptaseslippageatthehivribosomalframeshiftsequencepotentialimplicationsformodulationofgagpolsynthesis |