Cargando…
Inferring genetic interactions from comparative fitness data
Darwinian fitness is a central concept in evolutionary biology. In practice, however, it is hardly possible to measure fitness for all genotypes in a natural population. Here, we present quantitative tools to make inferences about epistatic gene interactions when the fitness landscape is only incomp...
Autores principales: | Crona, Kristina, Gavryushkin, Alex, Greene, Devin, Beerenwinkel, Niko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737811/ https://www.ncbi.nlm.nih.gov/pubmed/29260711 http://dx.doi.org/10.7554/eLife.28629 |
Ejemplares similares
-
The geometry of partial fitness orders and an efficient method for detecting genetic interactions
por: Lienkaemper, Caitlin, et al.
Publicado: (2018) -
Inference of gene regulation functions from dynamic transcriptome data
por: Hillenbrand, Patrick, et al.
Publicado: (2016) -
ProteInfer, deep neural networks for protein functional inference
por: Sanderson, Theo, et al.
Publicado: (2023) -
Heterogeneity of the GFP fitness landscape and data-driven protein design
por: Gonzalez Somermeyer, Louisa, et al.
Publicado: (2022) -
Interrogating theoretical models of neural computation with emergent property inference
por: Bittner, Sean R, et al.
Publicado: (2021)