Cargando…
Combination of IL-2, rapamycin, DNA methyltransferase and histone deacetylase inhibitors for the expansion of human regulatory T cells
FOXP3(+) regulatory T cell (Treg) based cellular therapies represent promising therapeutic options in autoimmunity, allergy, transplantation and prevention of Graft Versus Host (GVH) Disease. Among human FOXP3-expressing CD4(+)T cells, only the CD45RA(+) naïve Treg (nTreg) subset is suitable for in...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739596/ https://www.ncbi.nlm.nih.gov/pubmed/29285209 http://dx.doi.org/10.18632/oncotarget.10914 |
_version_ | 1783287894245376000 |
---|---|
author | Miyara, Makoto Chader, Driss Burlion, Aude Goldstein, Jérémie Sterlin, Delphine Norol, Françoise Trebeden-Nègre, Hélène Claër, Laetitia Sakaguchi, Shimon Marodon, Gilles Amoura, Zahir Gorochov, Guy |
author_facet | Miyara, Makoto Chader, Driss Burlion, Aude Goldstein, Jérémie Sterlin, Delphine Norol, Françoise Trebeden-Nègre, Hélène Claër, Laetitia Sakaguchi, Shimon Marodon, Gilles Amoura, Zahir Gorochov, Guy |
author_sort | Miyara, Makoto |
collection | PubMed |
description | FOXP3(+) regulatory T cell (Treg) based cellular therapies represent promising therapeutic options in autoimmunity, allergy, transplantation and prevention of Graft Versus Host (GVH) Disease. Among human FOXP3-expressing CD4(+)T cells, only the CD45RA(+) naïve Treg (nTreg) subset is suitable for in vitro expansion. However, FoxP3 expression decays in cells using currently described culture protocols. Rapamycin alone was not able to prevent FOXP3 loss in nTregs cells, as only a half of them maintained FOXP3 expression after 14 days of culture. In contrast we report a novel combined drug regimen that can drastically stabilize FOXP3 expression in cultured Tregs. IL-2, rapamycin, histone deacetylase and DNA methyltransferase inhibitors act in synergy to allow expansion of human regulatory T cells with sustained high expression of FOXP3 and CD15s with potent suppressive capacities in vitro and control of murine xeno-GVH reactions. Of note, an additional subsequent infusion of expanded nTreg cells did not improve survival of mice. Combination of IL-2, rapamycin, histone deacetylase and DNA methyltransferase inhibitors is optimal for the expansion in vitro of pure effective nTreg maintaining high levels of FOXP3 for therapeutic purposes. |
format | Online Article Text |
id | pubmed-5739596 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-57395962017-12-28 Combination of IL-2, rapamycin, DNA methyltransferase and histone deacetylase inhibitors for the expansion of human regulatory T cells Miyara, Makoto Chader, Driss Burlion, Aude Goldstein, Jérémie Sterlin, Delphine Norol, Françoise Trebeden-Nègre, Hélène Claër, Laetitia Sakaguchi, Shimon Marodon, Gilles Amoura, Zahir Gorochov, Guy Oncotarget Research Paper FOXP3(+) regulatory T cell (Treg) based cellular therapies represent promising therapeutic options in autoimmunity, allergy, transplantation and prevention of Graft Versus Host (GVH) Disease. Among human FOXP3-expressing CD4(+)T cells, only the CD45RA(+) naïve Treg (nTreg) subset is suitable for in vitro expansion. However, FoxP3 expression decays in cells using currently described culture protocols. Rapamycin alone was not able to prevent FOXP3 loss in nTregs cells, as only a half of them maintained FOXP3 expression after 14 days of culture. In contrast we report a novel combined drug regimen that can drastically stabilize FOXP3 expression in cultured Tregs. IL-2, rapamycin, histone deacetylase and DNA methyltransferase inhibitors act in synergy to allow expansion of human regulatory T cells with sustained high expression of FOXP3 and CD15s with potent suppressive capacities in vitro and control of murine xeno-GVH reactions. Of note, an additional subsequent infusion of expanded nTreg cells did not improve survival of mice. Combination of IL-2, rapamycin, histone deacetylase and DNA methyltransferase inhibitors is optimal for the expansion in vitro of pure effective nTreg maintaining high levels of FOXP3 for therapeutic purposes. Impact Journals LLC 2016-07-28 /pmc/articles/PMC5739596/ /pubmed/29285209 http://dx.doi.org/10.18632/oncotarget.10914 Text en Copyright: © 2017 Miyara et al. http://creativecommons.org/licenses/by/3.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Research Paper Miyara, Makoto Chader, Driss Burlion, Aude Goldstein, Jérémie Sterlin, Delphine Norol, Françoise Trebeden-Nègre, Hélène Claër, Laetitia Sakaguchi, Shimon Marodon, Gilles Amoura, Zahir Gorochov, Guy Combination of IL-2, rapamycin, DNA methyltransferase and histone deacetylase inhibitors for the expansion of human regulatory T cells |
title | Combination of IL-2, rapamycin, DNA methyltransferase and histone deacetylase inhibitors for the expansion of human regulatory T cells |
title_full | Combination of IL-2, rapamycin, DNA methyltransferase and histone deacetylase inhibitors for the expansion of human regulatory T cells |
title_fullStr | Combination of IL-2, rapamycin, DNA methyltransferase and histone deacetylase inhibitors for the expansion of human regulatory T cells |
title_full_unstemmed | Combination of IL-2, rapamycin, DNA methyltransferase and histone deacetylase inhibitors for the expansion of human regulatory T cells |
title_short | Combination of IL-2, rapamycin, DNA methyltransferase and histone deacetylase inhibitors for the expansion of human regulatory T cells |
title_sort | combination of il-2, rapamycin, dna methyltransferase and histone deacetylase inhibitors for the expansion of human regulatory t cells |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739596/ https://www.ncbi.nlm.nih.gov/pubmed/29285209 http://dx.doi.org/10.18632/oncotarget.10914 |
work_keys_str_mv | AT miyaramakoto combinationofil2rapamycindnamethyltransferaseandhistonedeacetylaseinhibitorsfortheexpansionofhumanregulatorytcells AT chaderdriss combinationofil2rapamycindnamethyltransferaseandhistonedeacetylaseinhibitorsfortheexpansionofhumanregulatorytcells AT burlionaude combinationofil2rapamycindnamethyltransferaseandhistonedeacetylaseinhibitorsfortheexpansionofhumanregulatorytcells AT goldsteinjeremie combinationofil2rapamycindnamethyltransferaseandhistonedeacetylaseinhibitorsfortheexpansionofhumanregulatorytcells AT sterlindelphine combinationofil2rapamycindnamethyltransferaseandhistonedeacetylaseinhibitorsfortheexpansionofhumanregulatorytcells AT norolfrancoise combinationofil2rapamycindnamethyltransferaseandhistonedeacetylaseinhibitorsfortheexpansionofhumanregulatorytcells AT trebedennegrehelene combinationofil2rapamycindnamethyltransferaseandhistonedeacetylaseinhibitorsfortheexpansionofhumanregulatorytcells AT claerlaetitia combinationofil2rapamycindnamethyltransferaseandhistonedeacetylaseinhibitorsfortheexpansionofhumanregulatorytcells AT sakaguchishimon combinationofil2rapamycindnamethyltransferaseandhistonedeacetylaseinhibitorsfortheexpansionofhumanregulatorytcells AT marodongilles combinationofil2rapamycindnamethyltransferaseandhistonedeacetylaseinhibitorsfortheexpansionofhumanregulatorytcells AT amourazahir combinationofil2rapamycindnamethyltransferaseandhistonedeacetylaseinhibitorsfortheexpansionofhumanregulatorytcells AT gorochovguy combinationofil2rapamycindnamethyltransferaseandhistonedeacetylaseinhibitorsfortheexpansionofhumanregulatorytcells |