Cargando…

Targeted next generation sequencing in Chinese colorectal cancer patients guided anti-EGFR treatment and facilitated precision cancer medicine

OBJECTIVE: Colorectal cancer (CRC) patients with both RAS and BRAF wild-type tumors determined by non-next generation sequencing (NGS) testing may still not respond due to the presence of additional mutated genes such as PIK3CA or PTEN. In this study, a broad, hybrid capture-based NGS assay was used...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Helei, Liu, Dong, Zhang, Chuantao, Jiang, Yanxia, Lu, Guifang, Zhou, Na, Yang, Xiaonan, Zhang, Xiaoping, Li, Zhuokun, Zhu, Hongmei, Qian, Zhaoyang, Zhang, Xiaochun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739621/
https://www.ncbi.nlm.nih.gov/pubmed/29285234
http://dx.doi.org/10.18632/oncotarget.21349
Descripción
Sumario:OBJECTIVE: Colorectal cancer (CRC) patients with both RAS and BRAF wild-type tumors determined by non-next generation sequencing (NGS) testing may still not respond due to the presence of additional mutated genes such as PIK3CA or PTEN. In this study, a broad, hybrid capture-based NGS assay was used to identify RAS, BRAF and additional targetable genetic alterations from Chinese CRC tissues. METHODS: Fifty-seven cases of CRC were enrolled, and all the patients signed the informed consent. In total, 7708 exons of 508 tumor-related genes and 78 introns of 19 frequently rearranged genes were assessed for base substitutions, INDELs, copy number alterations, and gene fusions. RESULTS: The study found that 50.9% (29/57) of the tumors harbored KRAS mutations, 3.5% (2/57) harbored NRAS mutations and 3.5% (2/57) harbored BRAF mutations. More specifically, 89.7% (26/29) of RAS mutations were located in codon 12. Except for RAS and RAF, anti-EGFR therapy response genetic mutations in PTEN (n=2) and PIK3CA (n=1) were found in 4.7% (3/64) of the samples. Actionable alterations were found in HER2 (n = 7), CCND2 (n = 2), NF1 (n = 1), and BRCA1 (n = 1). CONCLUSIONS: Our results illustrated that 82.5% (47/57) of the samples harbored at least one actionable genetic alteration identified by NGS. HER2 amplifications or mutations, which were identified in 12.3% of the tissues, defined a unique molecular subtype of CRC. The study suggests that high-throughput NGS testing in CRC tissues is a comprehensive and efficient genomic profiling assay to guide personalized therapy.