Cargando…
Metal-Dependent DNA Recognition and Cell Internalization of Designed, Basic Peptides
[Image: see text] A fragment of the DNA basic region (br) of the GCN4 bZIP transcription factor has been modified to include two His residues at designed i and i+4 positions of its N-terminus. The resulting monomeric peptide (brHis(2)) does not bind to its consensus target DNA site (5′-GTCAT-3′). Ho...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741177/ https://www.ncbi.nlm.nih.gov/pubmed/29056048 http://dx.doi.org/10.1021/jacs.7b07422 |
_version_ | 1783288154021691392 |
---|---|
author | Learte-Aymamí, Soraya Curado, Natalia Rodríguez, Jéssica Vázquez, M. Eugenio Mascareñas, José L. |
author_facet | Learte-Aymamí, Soraya Curado, Natalia Rodríguez, Jéssica Vázquez, M. Eugenio Mascareñas, José L. |
author_sort | Learte-Aymamí, Soraya |
collection | PubMed |
description | [Image: see text] A fragment of the DNA basic region (br) of the GCN4 bZIP transcription factor has been modified to include two His residues at designed i and i+4 positions of its N-terminus. The resulting monomeric peptide (brHis(2)) does not bind to its consensus target DNA site (5′-GTCAT-3′). However, addition of Pd(en)Cl(2) (en, ethylenediamine) promotes a high-affinity interaction with exquisite selectivity for this sequence. The peptide–DNA complex is disassembled by addition of a slight excess of a palladium chelator, and the interaction can be reversibly switched multiple times by playing with controlled amounts of either the metal complex or the chelator. Importantly, while the peptide brHis(2) fails to translocate across cell membranes on its own, addition of the palladium reagent induces an efficient cell internalization of this peptide. In short, we report (1) a designed, short peptide that displays highly selective, major groove DNA binding, (2) a reversible, metal-dependent DNA interaction, and (3) a metal-promoted cell internalization of this basic peptide. |
format | Online Article Text |
id | pubmed-5741177 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-57411772018-02-12 Metal-Dependent DNA Recognition and Cell Internalization of Designed, Basic Peptides Learte-Aymamí, Soraya Curado, Natalia Rodríguez, Jéssica Vázquez, M. Eugenio Mascareñas, José L. J Am Chem Soc [Image: see text] A fragment of the DNA basic region (br) of the GCN4 bZIP transcription factor has been modified to include two His residues at designed i and i+4 positions of its N-terminus. The resulting monomeric peptide (brHis(2)) does not bind to its consensus target DNA site (5′-GTCAT-3′). However, addition of Pd(en)Cl(2) (en, ethylenediamine) promotes a high-affinity interaction with exquisite selectivity for this sequence. The peptide–DNA complex is disassembled by addition of a slight excess of a palladium chelator, and the interaction can be reversibly switched multiple times by playing with controlled amounts of either the metal complex or the chelator. Importantly, while the peptide brHis(2) fails to translocate across cell membranes on its own, addition of the palladium reagent induces an efficient cell internalization of this peptide. In short, we report (1) a designed, short peptide that displays highly selective, major groove DNA binding, (2) a reversible, metal-dependent DNA interaction, and (3) a metal-promoted cell internalization of this basic peptide. American Chemical Society 2017-10-22 2017-11-15 /pmc/articles/PMC5741177/ /pubmed/29056048 http://dx.doi.org/10.1021/jacs.7b07422 Text en Copyright © 2017 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Learte-Aymamí, Soraya Curado, Natalia Rodríguez, Jéssica Vázquez, M. Eugenio Mascareñas, José L. Metal-Dependent DNA Recognition and Cell Internalization of Designed, Basic Peptides |
title | Metal-Dependent
DNA Recognition and Cell Internalization
of Designed, Basic Peptides |
title_full | Metal-Dependent
DNA Recognition and Cell Internalization
of Designed, Basic Peptides |
title_fullStr | Metal-Dependent
DNA Recognition and Cell Internalization
of Designed, Basic Peptides |
title_full_unstemmed | Metal-Dependent
DNA Recognition and Cell Internalization
of Designed, Basic Peptides |
title_short | Metal-Dependent
DNA Recognition and Cell Internalization
of Designed, Basic Peptides |
title_sort | metal-dependent
dna recognition and cell internalization
of designed, basic peptides |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741177/ https://www.ncbi.nlm.nih.gov/pubmed/29056048 http://dx.doi.org/10.1021/jacs.7b07422 |
work_keys_str_mv | AT learteaymamisoraya metaldependentdnarecognitionandcellinternalizationofdesignedbasicpeptides AT curadonatalia metaldependentdnarecognitionandcellinternalizationofdesignedbasicpeptides AT rodriguezjessica metaldependentdnarecognitionandcellinternalizationofdesignedbasicpeptides AT vazquezmeugenio metaldependentdnarecognitionandcellinternalizationofdesignedbasicpeptides AT mascarenasjosel metaldependentdnarecognitionandcellinternalizationofdesignedbasicpeptides |