Cargando…
Human CYP2A13 and CYP2F1 Mediate Naphthalene Toxicity in the Lung and Nasal Mucosa of CYP2A13/2F1-Humanized Mice
BACKGROUND: The potential carcinogenicity of naphthalene (NA), a ubiquitous environmental pollutant, in human respiratory tract is a subject of intense debate. Chief among the uncertainties in risk assessment for NA is whether human lung CYP2A13 and CYP2F1 can mediate NA’s respiratory tract toxicity...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Environmental Health Perspectives
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743450/ https://www.ncbi.nlm.nih.gov/pubmed/28599267 http://dx.doi.org/10.1289/EHP844 |
_version_ | 1783288566757982208 |
---|---|
author | Li, Lei Carratt, Sarah Hartog, Matthew Kovalchuk, Nataliia Jia, Kunzhi Wang, Yanan Zhang, Qing-Yu Edwards, Patricia Van Winkle, Laura Ding, Xinxin |
author_facet | Li, Lei Carratt, Sarah Hartog, Matthew Kovalchuk, Nataliia Jia, Kunzhi Wang, Yanan Zhang, Qing-Yu Edwards, Patricia Van Winkle, Laura Ding, Xinxin |
author_sort | Li, Lei |
collection | PubMed |
description | BACKGROUND: The potential carcinogenicity of naphthalene (NA), a ubiquitous environmental pollutant, in human respiratory tract is a subject of intense debate. Chief among the uncertainties in risk assessment for NA is whether human lung CYP2A13 and CYP2F1 can mediate NA’s respiratory tract toxicity. OBJECTIVES: We aimed to assess the in vivo function of CYP2A13 and CYP2F1 in NA bioactivation and NA-induced respiratory tract toxicity in mouse models. METHODS: Rates of microsomal NA bioactivation and the effects of an anti-CYP2A antibody were determined for lung and nasal olfactory mucosa (OM) from Cyp2abfgs-null, CYP2A13-humanized, and CYP2A13/2F1-humanized mice. The extent of NA respiratory toxicity was compared among wild-type, Cyp2abfgs-null, and CYP2A13/2F1-humanized mice following inhalation exposure at an occupationally relevant dose (10 ppm for 4 hr). RESULTS: In vitro studies indicated that the NA bioactivation activities in OM and lung of the CYP2A13/2F1-humanized mice were primarily contributed by, respectively, CYP2A13 and CYP2F1. CYP2A13/2F1-humanized mice showed greater sensitivity to NA than Cyp2abfgs-null mice, with greater depletion of nonprotein sulfhydryl and occurrence of cytotoxicity (observable by routine histology) in the OM, at 2 or 20 hr after termination of NA exposure, in humanized mice. Focal, rather than gross, lung toxicity was observed in Cyp2abfgs-null and CYP2A13/2F1-humanized mice; however, the extent of NA-induced lung injury (shown as volume fraction of damaged cells) was significantly greater in the terminal bronchioles of CYP2A13/2F1-humanized mice than in Cyp2abfgs-null mice. CONCLUSION: CYP2F1 is an active enzyme. Both CYP2A13 and CYP2F1 are active toward NA in the CYP2A13/2F1-humanized mice, where they play significant roles in NA-induced respiratory tract toxicity. https://doi.org/10.1289/EHP844 |
format | Online Article Text |
id | pubmed-5743450 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Environmental Health Perspectives |
record_format | MEDLINE/PubMed |
spelling | pubmed-57434502017-12-31 Human CYP2A13 and CYP2F1 Mediate Naphthalene Toxicity in the Lung and Nasal Mucosa of CYP2A13/2F1-Humanized Mice Li, Lei Carratt, Sarah Hartog, Matthew Kovalchuk, Nataliia Jia, Kunzhi Wang, Yanan Zhang, Qing-Yu Edwards, Patricia Van Winkle, Laura Ding, Xinxin Environ Health Perspect Research BACKGROUND: The potential carcinogenicity of naphthalene (NA), a ubiquitous environmental pollutant, in human respiratory tract is a subject of intense debate. Chief among the uncertainties in risk assessment for NA is whether human lung CYP2A13 and CYP2F1 can mediate NA’s respiratory tract toxicity. OBJECTIVES: We aimed to assess the in vivo function of CYP2A13 and CYP2F1 in NA bioactivation and NA-induced respiratory tract toxicity in mouse models. METHODS: Rates of microsomal NA bioactivation and the effects of an anti-CYP2A antibody were determined for lung and nasal olfactory mucosa (OM) from Cyp2abfgs-null, CYP2A13-humanized, and CYP2A13/2F1-humanized mice. The extent of NA respiratory toxicity was compared among wild-type, Cyp2abfgs-null, and CYP2A13/2F1-humanized mice following inhalation exposure at an occupationally relevant dose (10 ppm for 4 hr). RESULTS: In vitro studies indicated that the NA bioactivation activities in OM and lung of the CYP2A13/2F1-humanized mice were primarily contributed by, respectively, CYP2A13 and CYP2F1. CYP2A13/2F1-humanized mice showed greater sensitivity to NA than Cyp2abfgs-null mice, with greater depletion of nonprotein sulfhydryl and occurrence of cytotoxicity (observable by routine histology) in the OM, at 2 or 20 hr after termination of NA exposure, in humanized mice. Focal, rather than gross, lung toxicity was observed in Cyp2abfgs-null and CYP2A13/2F1-humanized mice; however, the extent of NA-induced lung injury (shown as volume fraction of damaged cells) was significantly greater in the terminal bronchioles of CYP2A13/2F1-humanized mice than in Cyp2abfgs-null mice. CONCLUSION: CYP2F1 is an active enzyme. Both CYP2A13 and CYP2F1 are active toward NA in the CYP2A13/2F1-humanized mice, where they play significant roles in NA-induced respiratory tract toxicity. https://doi.org/10.1289/EHP844 Environmental Health Perspectives 2017-06-08 /pmc/articles/PMC5743450/ /pubmed/28599267 http://dx.doi.org/10.1289/EHP844 Text en EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted. |
spellingShingle | Research Li, Lei Carratt, Sarah Hartog, Matthew Kovalchuk, Nataliia Jia, Kunzhi Wang, Yanan Zhang, Qing-Yu Edwards, Patricia Van Winkle, Laura Ding, Xinxin Human CYP2A13 and CYP2F1 Mediate Naphthalene Toxicity in the Lung and Nasal Mucosa of CYP2A13/2F1-Humanized Mice |
title | Human CYP2A13 and CYP2F1 Mediate Naphthalene Toxicity in the Lung and Nasal Mucosa of CYP2A13/2F1-Humanized Mice |
title_full | Human CYP2A13 and CYP2F1 Mediate Naphthalene Toxicity in the Lung and Nasal Mucosa of CYP2A13/2F1-Humanized Mice |
title_fullStr | Human CYP2A13 and CYP2F1 Mediate Naphthalene Toxicity in the Lung and Nasal Mucosa of CYP2A13/2F1-Humanized Mice |
title_full_unstemmed | Human CYP2A13 and CYP2F1 Mediate Naphthalene Toxicity in the Lung and Nasal Mucosa of CYP2A13/2F1-Humanized Mice |
title_short | Human CYP2A13 and CYP2F1 Mediate Naphthalene Toxicity in the Lung and Nasal Mucosa of CYP2A13/2F1-Humanized Mice |
title_sort | human cyp2a13 and cyp2f1 mediate naphthalene toxicity in the lung and nasal mucosa of cyp2a13/2f1-humanized mice |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743450/ https://www.ncbi.nlm.nih.gov/pubmed/28599267 http://dx.doi.org/10.1289/EHP844 |
work_keys_str_mv | AT lilei humancyp2a13andcyp2f1mediatenaphthalenetoxicityinthelungandnasalmucosaofcyp2a132f1humanizedmice AT carrattsarah humancyp2a13andcyp2f1mediatenaphthalenetoxicityinthelungandnasalmucosaofcyp2a132f1humanizedmice AT hartogmatthew humancyp2a13andcyp2f1mediatenaphthalenetoxicityinthelungandnasalmucosaofcyp2a132f1humanizedmice AT kovalchuknataliia humancyp2a13andcyp2f1mediatenaphthalenetoxicityinthelungandnasalmucosaofcyp2a132f1humanizedmice AT jiakunzhi humancyp2a13andcyp2f1mediatenaphthalenetoxicityinthelungandnasalmucosaofcyp2a132f1humanizedmice AT wangyanan humancyp2a13andcyp2f1mediatenaphthalenetoxicityinthelungandnasalmucosaofcyp2a132f1humanizedmice AT zhangqingyu humancyp2a13andcyp2f1mediatenaphthalenetoxicityinthelungandnasalmucosaofcyp2a132f1humanizedmice AT edwardspatricia humancyp2a13andcyp2f1mediatenaphthalenetoxicityinthelungandnasalmucosaofcyp2a132f1humanizedmice AT vanwinklelaura humancyp2a13andcyp2f1mediatenaphthalenetoxicityinthelungandnasalmucosaofcyp2a132f1humanizedmice AT dingxinxin humancyp2a13andcyp2f1mediatenaphthalenetoxicityinthelungandnasalmucosaofcyp2a132f1humanizedmice |