Cargando…
Improved high-dimensional prediction with Random Forests by the use of co-data
BACKGROUND: Prediction in high dimensional settings is difficult due to the large number of variables relative to the sample size. We demonstrate how auxiliary ‘co-data’ can be used to improve the performance of a Random Forest in such a setting. RESULTS: Co-data are incorporated in the Random Fores...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745983/ https://www.ncbi.nlm.nih.gov/pubmed/29281963 http://dx.doi.org/10.1186/s12859-017-1993-1 |