Cargando…
Improved high-dimensional prediction with Random Forests by the use of co-data
BACKGROUND: Prediction in high dimensional settings is difficult due to the large number of variables relative to the sample size. We demonstrate how auxiliary ‘co-data’ can be used to improve the performance of a Random Forest in such a setting. RESULTS: Co-data are incorporated in the Random Fores...
Autores principales: | te Beest, Dennis E., Mes, Steven W., Wilting, Saskia M., Brakenhoff, Ruud H., van de Wiel, Mark A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745983/ https://www.ncbi.nlm.nih.gov/pubmed/29281963 http://dx.doi.org/10.1186/s12859-017-1993-1 |
Ejemplares similares
-
tigaR: integrative significance analysis of temporal differential gene expression induced by genomic abnormalities
por: Miok, Viktorian, et al.
Publicado: (2014) -
Intensity-based analysis of dual-color gene expression data as an alternative to ratio-based analysis to enhance reproducibility
por: Bossers, Koen, et al.
Publicado: (2010) -
Learning from a lot: Empirical Bayes for high‐dimensional model‐based prediction
por: van de Wiel, Mark A., et al.
Publicado: (2018) -
Cluster ensemble based on Random Forests for genetic data
por: Alhusain, Luluah, et al.
Publicado: (2017) -
Prognostic modeling of oral cancer by gene profiles and clinicopathological co-variables
por: Mes, Steven W., et al.
Publicado: (2017)