Cargando…
Renoprotective effect of erythropoietin via modulation of the STAT6/MAPK/NF-κB pathway in ischemia/reperfusion injury after renal transplantation
Ischemia/reperfusion injury (IRI) commonly occurs in renal transplantation. Erythropoietin (EPO) exerts a protective effect in IRI. To investigate the underlying molecular mechanism, rat models of renal IRI were established and treated with EPO and/or lentivirus-mediated EPO-siRNA, the signal transd...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746301/ https://www.ncbi.nlm.nih.gov/pubmed/29115389 http://dx.doi.org/10.3892/ijmm.2017.3204 |
Sumario: | Ischemia/reperfusion injury (IRI) commonly occurs in renal transplantation. Erythropoietin (EPO) exerts a protective effect in IRI. To investigate the underlying molecular mechanism, rat models of renal IRI were established and treated with EPO and/or lentivirus-mediated EPO-siRNA, the signal transducer and activator of transcription 6 (STAT6) inhibitor AS1517499, the JNK inhibitor SP600125, the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580, and the nuclear factor (NF)-κB inhibitor lactacystin. Histological examination revealed that EPO protected the kidney from IRI, through decreasing the extent of tissue congestion and inflammatory cell infiltration; however, EPO siRNA did not exert the same protective effect. In addition, the EPO level was inversely associated with renal IRI. EPO downregulated the expression of interferon-γ, interleukin (IL)-4, creatinine and caspase-3, and upregulated the expression of IL-10, thymic stromal lymphopoietin, STAT6, p-JNK and p-p38, while the opposite effects were observed with the administration of EPO-siRNA and the specific respective inhibitors. Further results revealed that MAPK (p-JNK and p-p38) acted upstream of NF-κB, and that NF-κB signaling regulated the expression of caspase-1 and -3, which may be responsible for the cytotoxicity associated with IRI. Taken together, the results of the present study demonstrated that EPO exerted a protective effect in renal IRI via the STAT6/MAPK/NF-κB pathway. This protective effect of EPO may improve reperfusion tolerance in ischemic kidneys and benefit transplant recipients. |
---|