Cargando…
Using single-cell multiple omics approaches to resolve tumor heterogeneity
It has become increasingly clear that both normal and cancer tissues are composed of heterogeneous populations. Genetic variation can be attributed to the downstream effects of inherited mutations, environmental factors, or inaccurately resolved errors in transcription and replication. When lesions...
Autores principales: | Ortega, Michael A., Poirion, Olivier, Zhu, Xun, Huang, Sijia, Wolfgruber, Thomas K., Sebra, Robert, Garmire, Lana X. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746494/ https://www.ncbi.nlm.nih.gov/pubmed/29285690 http://dx.doi.org/10.1186/s40169-017-0177-y |
Ejemplares similares
-
DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data
por: Poirion, Olivier B., et al.
Publicado: (2021) -
Using single nucleotide variations in single-cell RNA-seq to identify subpopulations and genotype-phenotype linkage
por: Poirion, Olivier, et al.
Publicado: (2018) -
GranatumX: A Community-engaging, Modularized, and Flexible Webtool for Single-cell Data Analysis
por: Garmire, David G., et al.
Publicado: (2021) -
Single-Cell Transcriptomics Bioinformatics and Computational Challenges
por: Poirion, Olivier B., et al.
Publicado: (2016) -
DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data
por: Arisdakessian, Cédric, et al.
Publicado: (2019)