Cargando…
Markov Chain Realization of Joint Integrated Probabilistic Data Association
A practical probabilistic data association filter is proposed for tracking multiple targets in clutter. The number of joint data association events increases combinatorially with the number of measurements and the number of targets, which may become computationally impractical for even small numbers...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5750805/ https://www.ncbi.nlm.nih.gov/pubmed/29232872 http://dx.doi.org/10.3390/s17122865 |
_version_ | 1783289806399209472 |
---|---|
author | Lee, Eui Hyuk Zhang, Qian Song, Taek Lyul |
author_facet | Lee, Eui Hyuk Zhang, Qian Song, Taek Lyul |
author_sort | Lee, Eui Hyuk |
collection | PubMed |
description | A practical probabilistic data association filter is proposed for tracking multiple targets in clutter. The number of joint data association events increases combinatorially with the number of measurements and the number of targets, which may become computationally impractical for even small numbers of closely located targets in real target-tracking applications in heavily cluttered environments. In this paper, a Markov chain model is proposed to generate a set of feasible joint events (FJEs) for multiple target tracking that is used to approximate the multi-target data association probabilities and the probabilities of target existence of joint integrated probabilistic data association (JIPDA). A Markov chain with the transition probabilities obtained from the integrated probabilistic data association (IPDA) for single-target tracking is designed to generate a random sequence composed of the predetermined number of FJEs without incurring additional computational cost. The FJEs generated are adjusted for the multi-target tracking environment. A computationally tractable set of these random sequences is utilized to evaluate the track-to-measurement association probabilities such that the computational burden is substantially reduced compared to the JIPDA algorithm. By a series of simulations, the track confirmation rates and target retention statistics of the proposed algorithm are compared with the other existing algorithms including JIPDA to show the effectiveness of the proposed algorithm. |
format | Online Article Text |
id | pubmed-5750805 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-57508052018-01-10 Markov Chain Realization of Joint Integrated Probabilistic Data Association Lee, Eui Hyuk Zhang, Qian Song, Taek Lyul Sensors (Basel) Article A practical probabilistic data association filter is proposed for tracking multiple targets in clutter. The number of joint data association events increases combinatorially with the number of measurements and the number of targets, which may become computationally impractical for even small numbers of closely located targets in real target-tracking applications in heavily cluttered environments. In this paper, a Markov chain model is proposed to generate a set of feasible joint events (FJEs) for multiple target tracking that is used to approximate the multi-target data association probabilities and the probabilities of target existence of joint integrated probabilistic data association (JIPDA). A Markov chain with the transition probabilities obtained from the integrated probabilistic data association (IPDA) for single-target tracking is designed to generate a random sequence composed of the predetermined number of FJEs without incurring additional computational cost. The FJEs generated are adjusted for the multi-target tracking environment. A computationally tractable set of these random sequences is utilized to evaluate the track-to-measurement association probabilities such that the computational burden is substantially reduced compared to the JIPDA algorithm. By a series of simulations, the track confirmation rates and target retention statistics of the proposed algorithm are compared with the other existing algorithms including JIPDA to show the effectiveness of the proposed algorithm. MDPI 2017-12-10 /pmc/articles/PMC5750805/ /pubmed/29232872 http://dx.doi.org/10.3390/s17122865 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lee, Eui Hyuk Zhang, Qian Song, Taek Lyul Markov Chain Realization of Joint Integrated Probabilistic Data Association |
title | Markov Chain Realization of Joint Integrated Probabilistic Data Association |
title_full | Markov Chain Realization of Joint Integrated Probabilistic Data Association |
title_fullStr | Markov Chain Realization of Joint Integrated Probabilistic Data Association |
title_full_unstemmed | Markov Chain Realization of Joint Integrated Probabilistic Data Association |
title_short | Markov Chain Realization of Joint Integrated Probabilistic Data Association |
title_sort | markov chain realization of joint integrated probabilistic data association |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5750805/ https://www.ncbi.nlm.nih.gov/pubmed/29232872 http://dx.doi.org/10.3390/s17122865 |
work_keys_str_mv | AT leeeuihyuk markovchainrealizationofjointintegratedprobabilisticdataassociation AT zhangqian markovchainrealizationofjointintegratedprobabilisticdataassociation AT songtaeklyul markovchainrealizationofjointintegratedprobabilisticdataassociation |