Cargando…

Evaluation of Biosynthesis, Accumulation and Antioxidant Activityof Vitamin E in Sweet Corn (Zea mays L.) during Kernel Development

Sweet corn kernels were used in this research to study the dynamics of vitamin E, by evaluatingthe expression levels of genes involved in vitamin E synthesis, the accumulation of vitamin E, and the antioxidant activity during the different stage of kernel development. Results showed that expression...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Lihua, Yu, Yongtao, Mao, Jihua, Liu, Haiying, Hu, Jian Guang, Li, Tong, Guo, Xinbo, Liu, Rui Hai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751378/
https://www.ncbi.nlm.nih.gov/pubmed/29261149
http://dx.doi.org/10.3390/ijms18122780
Descripción
Sumario:Sweet corn kernels were used in this research to study the dynamics of vitamin E, by evaluatingthe expression levels of genes involved in vitamin E synthesis, the accumulation of vitamin E, and the antioxidant activity during the different stage of kernel development. Results showed that expression levels of (Zm)HPT and (Zm)TC genes increased, whereas (Zm)TMT gene dramatically decreased during kernel development. The contents of all the types of vitamin E in sweet corn had a significant upward increase during kernel development, and reached the highest level at 30 days after pollination (DAP). Amongst the eight isomers of vitamin E, the content of γ-tocotrienol was the highest, and increased by 14.9 folds, followed by α-tocopherolwith an increase of 22 folds, and thecontents of isomers γ-tocopherol, α-tocotrienol, δ-tocopherol,δ-tocotrienol, and β-tocopherol were also followed during kernel development. The antioxidant activity of sweet corn during kernel development was increased, and was up to 101.8 ± 22.3 μmol of α-tocopherol equivlent/100 g in fresh weight (FW) at 30 DAP. There was a positive correlation between vitamin E contents and antioxidant activity in sweet corn during the kernel development, and a negative correlation between the expressions of (Zm)TMT gene and vitamin E contents. These results revealed the relations amongst the content of vitamin E isomers and the gene expression, vitamin E accumulation, and antioxidant activity. The study can provide a harvesting strategy for vitamin E bio-fortification in sweet corn.