Cargando…
Stacked Sparse Auto-Encoders (SSAE) Based Electronic Nose for Chinese Liquors Classification
This paper presents a stacked sparse auto-encoder (SSAE) based deep learning method for an electronic nose (e-nose) system to classify different brands of Chinese liquors. It is well known that preprocessing; feature extraction (generation and reduction) are necessary steps in traditional data-proce...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751720/ https://www.ncbi.nlm.nih.gov/pubmed/29292772 http://dx.doi.org/10.3390/s17122855 |