Cargando…
Stacked Sparse Auto-Encoders (SSAE) Based Electronic Nose for Chinese Liquors Classification
This paper presents a stacked sparse auto-encoder (SSAE) based deep learning method for an electronic nose (e-nose) system to classify different brands of Chinese liquors. It is well known that preprocessing; feature extraction (generation and reduction) are necessary steps in traditional data-proce...
Autores principales: | Zhao, Wei, Meng, Qing-Hao, Zeng, Ming, Qi, Pei-Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751720/ https://www.ncbi.nlm.nih.gov/pubmed/29292772 http://dx.doi.org/10.3390/s17122855 |
Ejemplares similares
-
Improving Prediction of Self-interacting Proteins Using Stacked Sparse Auto-Encoder with PSSM profiles
por: Wang, Yan-Bin, et al.
Publicado: (2018) -
Variety Identification of Orchids Using Fourier Transform Infrared Spectroscopy Combined with Stacked Sparse Auto-Encoder
por: Chen, Yunfeng, et al.
Publicado: (2019) -
Discrimination of Chinese Liquors Based on Electronic Nose and Fuzzy Discriminant Principal Component Analysis
por: Wu, Xiaohong, et al.
Publicado: (2019) -
Classification of Multiple Chinese Liquors by Means of a QCM-based E-Nose and MDS-SVM Classifier
por: Li, Qiang, et al.
Publicado: (2017) -
Automatic classification of nerve discharge rhythms based on sparse auto-encoder and time series feature
por: Jiang, Zhongting, et al.
Publicado: (2022)