Cargando…
Analyzing metabolomics data for association with genotypes using two-component Gaussian mixture distributions
Standard approaches to evaluate the impact of single nucleotide polymorphisms (SNP) on quantitative phenotypes use linear models. However, these normal-based approaches may not optimally model phenotypes which are better represented by Gaussian mixture distributions (e.g., some metabolomics data). W...
Autores principales: | Westra, Jason, Hartman, Nicholas, Lake, Bethany, Shearer, Gregory, Tintle, Nathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757879/ https://www.ncbi.nlm.nih.gov/pubmed/29218908 |
Ejemplares similares
-
Using Summary Statistics to Model Multiplicative Combinations of Initially Analyzed Phenotypes With a Flexible Choice of Covariates
por: Wolf , Jack M., et al.
Publicado: (2021) -
Distribution Optimization: An evolutionary algorithm to separate Gaussian mixtures
por: Lerch, Florian, et al.
Publicado: (2020) -
Computationally efficient, exact, covariate-adjusted genetic principal component analysis by leveraging individual marker summary statistics from large biobanks
por: Wolf, Jack M., et al.
Publicado: (2020) -
Outdoor THz fading modeling by means of gaussian and gamma mixture distributions
por: Papasotiriou, Evangelos N., et al.
Publicado: (2023) -
Iterative Diffusion-Based Distributed Cubature Gaussian Mixture Filter for Multisensor Estimation
por: Jia, Bin, et al.
Publicado: (2016)