Cargando…

Characterization of the interactions between inhibitor-1 and recombinant PP1 by NMR spectroscopy

Inhibitor-1 is converted into a potent inhibitor of native protein phosphatase-1 (PP1) when Thr35 is phosphorylated by cAMP-dependent protein kinase (PKA). However, PKA-phosphorylated form of inhibitor-1 displayed a weak activity in inhibition of recombinant PP1. The mechanism for the impaired activ...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Chu-Ting, Lin, Yu-Shan, Huang, Yi-Choang, Huang, Hsien-Lu, Yang, Jia-Qian, Wu, Tsung-Hsien, Chang, Chi-Fon, Huang, Shing-Jong, Huang, Hsien-Bin, Lin, Ta-Hsien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5758809/
https://www.ncbi.nlm.nih.gov/pubmed/29311589
http://dx.doi.org/10.1038/s41598-017-18383-x
Descripción
Sumario:Inhibitor-1 is converted into a potent inhibitor of native protein phosphatase-1 (PP1) when Thr35 is phosphorylated by cAMP-dependent protein kinase (PKA). However, PKA-phosphorylated form of inhibitor-1 displayed a weak activity in inhibition of recombinant PP1. The mechanism for the impaired activity of PKA-phosphorylated inhibitor-1 toward inhibition of recombinant PP1 remained elusive. By using NMR spectroscopy in combination with site-directed mutagenesis and inhibitory assay, we found that the interaction between recombinant PP1 and the consensus PP1-binding motif of PKA-thiophosphorylated form of inhibitor-1 was unexpectedly weak. Unlike binding to native PP1, the subdomains 1 (residues around and including the phosphorylated Thr35) and 2 (the consensus PP1-binding motif) of PKA-thiophosphorylated form of inhibitor-1 do not exhibit a synergistic effect in inhibition of recombinant PP1. This finding implied that a slight structural discrepancy exists between native and recombinant PP1, resulting in PKA-thiophosphorylated form of inhibitor-1 displaying a different affinity to native and recombinant enzyme.