Cargando…
Selective targeting of Scn8a prevents seizure development in a mouse model of mesial temporal lobe epilepsy
We previously found that genetic mutants with reduced expression or activity of Scn8a are resistant to induced seizures and that co-segregation of a mutant Scn8a allele can increase survival and seizure resistance of Scn1a mutant mice. In contrast, Scn8a expression is increased in the hippocampus fo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760706/ https://www.ncbi.nlm.nih.gov/pubmed/29317669 http://dx.doi.org/10.1038/s41598-017-17786-0 |
Sumario: | We previously found that genetic mutants with reduced expression or activity of Scn8a are resistant to induced seizures and that co-segregation of a mutant Scn8a allele can increase survival and seizure resistance of Scn1a mutant mice. In contrast, Scn8a expression is increased in the hippocampus following status epilepticus and amygdala kindling. These findings point to Scn8a as a promising therapeutic target for epilepsy and raise the possibility that aberrant overexpression of Scn8a in limbic structures may contribute to some epilepsies, including temporal lobe epilepsy. Using a small-hairpin-interfering RNA directed against the Scn8a gene, we selectively reduced Scn8a expression in the hippocampus of the intrahippocampal kainic acid (KA) mouse model of mesial temporal lobe epilepsy. We found that Scn8a knockdown prevented the development of spontaneous seizures in 9/10 mice, ameliorated KA-induced hyperactivity, and reduced reactive gliosis. These results support the potential of selectively targeting Scn8a for the treatment of refractory epilepsy. |
---|