Cargando…

Metabolic regulation of the PMCA: Role in cell death and survival()

The plasma membrane Ca(2+)-ATPase (PMCA) is a ubiquitously expressed, ATP-driven Ca(2+) pump that is critical for maintaining low resting cytosolic Ca(2+) ([Ca(2+)](i)) in all eukaryotic cells. Since cytotoxic Ca(2+) overload has such a central role in cell death, the PMCA represents an essential “l...

Descripción completa

Detalles Bibliográficos
Autor principal: Bruce, Jason I.E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5761718/
https://www.ncbi.nlm.nih.gov/pubmed/28625348
http://dx.doi.org/10.1016/j.ceca.2017.06.001
Descripción
Sumario:The plasma membrane Ca(2+)-ATPase (PMCA) is a ubiquitously expressed, ATP-driven Ca(2+) pump that is critical for maintaining low resting cytosolic Ca(2+) ([Ca(2+)](i)) in all eukaryotic cells. Since cytotoxic Ca(2+) overload has such a central role in cell death, the PMCA represents an essential “linchpin” for the delicate balance between cell survival and cell death. In general, impaired PMCA activity and reduced PMCA expression leads to cytotoxic Ca(2+) overload and Ca(2+) dependent cell death, both apoptosis and necrosis, whereas maintenance of PMCA activity or PMCA overexpression is generally accepted as being cytoprotective. However, the PMCA has a paradoxical role in cell death depending on the cell type and cellular context. The PMCA can be differentially regulated by Ca(2+)-dependent proteolysis, can be maintained by a localised glycolytic ATP supply, even in the face of global ATP depletion, and can be profoundly affected by the specific phospholipid environment that it sits within the membrane. The major focus of this review is to highlight some of the controversies surrounding the paradoxical role of the PMCA in cell death and survival, challenging the conventional view of ATP-dependent regulation of the PMCA and how this might influence cell fate.