Cargando…

Comparison of nuisance parameters in pediatric versus adult randomized trials: a meta-epidemiologic empirical evaluation

BACKGROUND: We wished to compare the nuisance parameters of pediatric vs. adult randomized-trials (RCTs) and determine if the latter can be used in sample size computations of the former. METHODS: In this meta-epidemiologic empirical evaluation we examined meta-analyses from the Cochrane Database of...

Descripción completa

Detalles Bibliográficos
Autores principales: Vandermeer, Ben, van der Tweel, Ingeborg, Jansen-van der Weide, Marijke C., Weinreich, Stephanie S., Contopoulos-Ioannidis, Despina G., Bassler, Dirk, Fernandes, Ricardo M., Askie, Lisa, Saloojee, Haroon, Baiardi, Paola, Ellenberg, Susan S., van der Lee, Johanna H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763521/
https://www.ncbi.nlm.nih.gov/pubmed/29321002
http://dx.doi.org/10.1186/s12874-017-0456-8
Descripción
Sumario:BACKGROUND: We wished to compare the nuisance parameters of pediatric vs. adult randomized-trials (RCTs) and determine if the latter can be used in sample size computations of the former. METHODS: In this meta-epidemiologic empirical evaluation we examined meta-analyses from the Cochrane Database of Systematic-Reviews, with at least one pediatric-RCT and at least one adult-RCT. Within each meta-analysis of binary efficacy-outcomes, we calculated the pooled-control-group event-rate (CER) across separately all pediatric and adult-trials, using random-effect models and subsequently calculated the control-group event-rate risk-ratio (CER-RR) of the pooled-pediatric-CERs vs. adult-CERs. Within each meta-analysis with continuous outcomes we calculated the pooled-control-group effect standard deviation (CE-SD) across separately all pediatric and adult-trials and subsequently calculated the CE-SD-ratio of the pooled-pediatric-CE-SDs vs. adult-CE-SDs. We then calculated across all meta-analyses the pooled-CER-RRs and pooled-CE-SD-ratios (primary endpoints) and the pooled-magnitude of effect-sizes of CER-RRs and CE-SD-ratios using REMs. A ratio < 1 indicates that pediatric trials have smaller nuisance parameters than adult trials. RESULTS: We analyzed 208 meta-analyses (135 for binary-outcomes, 73 for continuous-outcomes). For binary outcomes, pediatric-RCTs had on average 10% smaller CERs than adult-RCTs (summary-CE-RR: 0.90; 95% CI: 0.83, 0.98). For mortality outcomes the summary-CE-RR was 0.48 (95% CIs: 0.31, 0.74). For continuous outcomes, pediatric-RCTs had on average 26% smaller CE-SDs than adult-RCTs (summary-CE-SD-ratio: 0.74). CONCLUSIONS: Clinically relevant differences in nuisance parameters between pediatric and adult trials were detected. These differences have implications for design of future studies. Extrapolation of nuisance parameters for sample-sizes calculations from adult-trials to pediatric-trials should be cautiously done.