Cargando…

Automated image analysis detects aging in clinical-grade mesenchymal stromal cell cultures

BACKGROUND: Senescent cells are undesirable in cell therapy products due to reduced therapeutic activity and risk of aberrant cellular effects, and methods for assessing senescence are needed. Early-passage mesenchymal stromal cells (MSCs) are known to be small and spindle-shaped but become enlarged...

Descripción completa

Detalles Bibliográficos
Autores principales: Oja, S., Komulainen, P., Penttilä, A., Nystedt, J., Korhonen, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763576/
https://www.ncbi.nlm.nih.gov/pubmed/29321040
http://dx.doi.org/10.1186/s13287-017-0740-x
Descripción
Sumario:BACKGROUND: Senescent cells are undesirable in cell therapy products due to reduced therapeutic activity and risk of aberrant cellular effects, and methods for assessing senescence are needed. Early-passage mesenchymal stromal cells (MSCs) are known to be small and spindle-shaped but become enlarged upon cell aging. Indeed, cell morphology is routinely evaluated during MSC production using subjective methods. We have therefore explored the possibility of utilizing automated imaging-based analysis of cell morphology in clinical cell manufacturing. METHODS: An imaging system was adopted for analyzing changes in cell morphology of bone marrow-derived MSCs during long-term culture. Cells taken from the cultures at the desired passages were plated at low density for imaging, representing morphological changes observed in the clinical-grade cultures. The manifestations of aging and onset of senescence were monitored by population doubling numbers, expression of p16(INK4a) and p21(Cip1/Waf1), β-galactosidase activity, and telomeric terminal restriction fragment analysis. RESULTS: Cell area was the most statistically significant and practical parameter for describing morphological changes, correlating with biochemical senescence markers. MSCs from passages 1 (p1) and 3 (p3) were remarkably uniform in size, with cell areas between 1800 and 2500 μm(2). At p5 the cells began to enlarge resulting in a 4.8-fold increase at p6–9 as compared to p1. The expression of p16(INK4a) and activity of β-galactosidase had a strong correlation with the increase in cell area, whereas the expression of p21(Cip1/Waf1) reached its maximum at the onset of growth arrest and subsequently decreased. Mean telomere length shortened at an apparently constant rate during culture, from 8.2 ± 0.3 kbp at p1, reaching 6.08 ± 0.6 kbp at senescence. CONCLUSIONS: Imaging analysis of cell morphology is a useful tool for evaluating aging in cell cultures throughout the lifespan of MSCs. Our findings suggest that imaging analysis can reproducibly detect aging-related changes in cell morphology in MSC cultures. These findings suggest that cell morphology is still a supreme measure of cell quality and may be utilized to develop new noninvasive imaging-based methods to screen and quantitate aging in clinical-grade cell cultures. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13287-017-0740-x) contains supplementary material, which is available to authorized users.