Cargando…

Integration of pan-cancer transcriptomics with RPPA proteomics reveals mechanisms of epithelial-mesenchymal transition

Integrating data from multiple regulatory layers across cancer types could elucidate additional mechanisms of oncogenesis. Using antibody-based protein profiling of 736 cancer cell lines, along with matching transcriptomic data, we show that pan-cancer bimodality in the amounts of mRNA, protein, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Koplev, Simon, Lin, Katie, Dohlman, Anders B., Ma’ayan, Avi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766255/
https://www.ncbi.nlm.nih.gov/pubmed/29293502
http://dx.doi.org/10.1371/journal.pcbi.1005911
Descripción
Sumario:Integrating data from multiple regulatory layers across cancer types could elucidate additional mechanisms of oncogenesis. Using antibody-based protein profiling of 736 cancer cell lines, along with matching transcriptomic data, we show that pan-cancer bimodality in the amounts of mRNA, protein, and protein phosphorylation reveals mechanisms related to the epithelial-mesenchymal transition (EMT). Based on the bimodal expression of E-cadherin, we define an EMT signature consisting of 239 genes, many of which were not previously associated with EMT. By querying gene expression signatures collected from cancer cell lines after small-molecule perturbations, we identify enrichment for histone deacetylase (HDAC) inhibitors as inducers of EMT, and kinase inhibitors as mesenchymal-to-epithelial transition (MET) promoters. Causal modeling of protein-based signaling identifies putative drivers of EMT. In conclusion, integrative analysis of pan-cancer proteomic and transcriptomic data reveals key regulatory mechanisms of oncogenic transformation.