Cargando…

A natural inhibitor of kidney-type glutaminase: a withanolide from Physalis pubescens with potent anti-tumor activity

Kidney-type glutaminase (KGA), a mitochondrial enzyme converting glutamine to glutamate for energy supply, was over-expressed in many cancers and had been regarded as a promising therapeutic target in recent years. Structure-based virtual ligand screening predicted physapubescin K, a new withanolide...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Canrong, Zheng, Mengzhu, Gao, Suyu, Luan, Shanshan, Cheng, Li, Wang, Liqing, Li, Jiachen, Chen, Lixia, Li, Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768343/
https://www.ncbi.nlm.nih.gov/pubmed/29371926
http://dx.doi.org/10.18632/oncotarget.23058
Descripción
Sumario:Kidney-type glutaminase (KGA), a mitochondrial enzyme converting glutamine to glutamate for energy supply, was over-expressed in many cancers and had been regarded as a promising therapeutic target in recent years. Structure-based virtual ligand screening predicted physapubescin K, a new withanolide from Physalis pubescens, to be potential KGA inhibitor. Enzyme activity inhibition assays and microscale thermophoresis experiments had demonstrated the efficiency and specificity of physapubescin K targeting KGA. Additionally, physapubescin K exhibited potent proliferation inhibitory effects on a panel of human cancer cell lines, such as SW1990 and HCC827-ER. It blocked glutamine metabolism in SW1990 with increasing intracellular level of glutamine and decreasing glutamate and its downstream metabolites. Physapubescin K also significantly inhibited the tumor growth in a SW1990 xenograft mouse model. Interestingly, physapubescin K could reverse the resistance of HCC827-ER cells to erlotinib and synergize with the hexokinase 2 inhibitor to markedly enhance the inhibition of SW1990 cell proliferation.