Cargando…
Dual functional dinuclear platinum complex with selective reactivity towards c-myc G-quadruplex
G-quadruplexes (GQ) folded by the oncogenic G-rich sequences are the promising targets for developing anticancer therapeutic molecules. However, the current drug development mainly focused on non-covalent dynamic binders to stabilize GQ structures, while the covalent targeting from inorganic complex...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768759/ https://www.ncbi.nlm.nih.gov/pubmed/29335501 http://dx.doi.org/10.1038/s41598-017-19095-y |
Sumario: | G-quadruplexes (GQ) folded by the oncogenic G-rich sequences are the promising targets for developing anticancer therapeutic molecules. However, the current drug development mainly focused on non-covalent dynamic binders to stabilize GQ structures, while the covalent targeting from inorganic complexes via chelating principles, as a potent therapeutic strategy was surprisingly lack of exploration. Herein, a series of dinuclear platinum complexes, [(Pt(Dip)Cl)(2)(μ-diamine)](NO(3))(2) (Dip: 4,7-diphenyl-1,10-phenanthroline), were designed to contain two dual-functional Pt cores connected by an alkyl linkage. Pt3 with nonanediamine linkage optimized the specific binding towards c-myc G-quadruplex via dual functional clamp on GQ as 1) non-covalently π-stacking of aromatic ligands, and 2) two Pt(II) cores covalently chelated to guanines at both 3′- and 5′-ends. |
---|