Cargando…

Identification of a membrane-less compartment regulating invadosome function and motility

Depletion of liprin-α1, ERC1 or LL5 scaffolds inhibits extracellular matrix degradation by invasive cells. These proteins co-accumulate near invadosomes in NIH-Src cells, identifying a novel invadosome–associated compartment distinct from the core and adhesion ring of invadosomes. Depletion of eithe...

Descripción completa

Detalles Bibliográficos
Autores principales: Sala, Kristyna, Raimondi, Andrea, Tonoli, Diletta, Tacchetti, Carlo, de Curtis, Ivan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5773524/
https://www.ncbi.nlm.nih.gov/pubmed/29348417
http://dx.doi.org/10.1038/s41598-018-19447-2
Descripción
Sumario:Depletion of liprin-α1, ERC1 or LL5 scaffolds inhibits extracellular matrix degradation by invasive cells. These proteins co-accumulate near invadosomes in NIH-Src cells, identifying a novel invadosome–associated compartment distinct from the core and adhesion ring of invadosomes. Depletion of either protein perturbs the organization of invadosomes without influencing the recruitment of MT1-MMP metalloprotease. Liprin-α1 is not required for de novo formation of invadosomes after their disassembly by microtubules and Src inhibitors, while its depletion inhibits invadosome motility, thus affecting matrix degradation. Fluorescence recovery after photobleaching shows that the invadosome–associated compartment is dynamic, while correlative light immunoelectron microscopy identifies bona fide membrane–free invadosome–associated regions enriched in liprin-α1, which is virtually excluded from the invadosome core. The results indicate that liprin-α1, LL5 and ERC1 define a novel dynamic membrane-less compartment that regulates matrix degradation by affecting invadosome motility.