Cargando…

Rps26 directs mRNA-specific translation by recognition of Kozak sequence elements

We describe a novel approach to separate two ribosome populations from the same cells and use this method, and RNA-seq, to identify the mRNAs bound to S. cerevisiae ribosomes with and without Rps26, a protein linked to the pathogenesis of Diamond Blackfan Anemia (DBA). These analyses reveal that Rps...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferretti, Max B., Ghalei, Homa, Ward, Ethan A., Potts, Elizabeth L., Karbstein, Katrin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777333/
https://www.ncbi.nlm.nih.gov/pubmed/28759050
http://dx.doi.org/10.1038/nsmb.3442
Descripción
Sumario:We describe a novel approach to separate two ribosome populations from the same cells and use this method, and RNA-seq, to identify the mRNAs bound to S. cerevisiae ribosomes with and without Rps26, a protein linked to the pathogenesis of Diamond Blackfan Anemia (DBA). These analyses reveal that Rps26 contributes to mRNA-specific translation by recognition of the Kozak sequence in well-translated mRNAs, and that Rps26-deficient ribosomes preferentially translate mRNA from select stress response pathways. Surprisingly, exposure of yeast to these stresses leads to the formation of Rps26-deficient ribosomes and to the increased translation of their target mRNAs. These results describe a novel paradigm, the production of specialized ribosomes, which play physiological roles in augmenting the well-characterized transcriptional stress response with a heretofore unknown translational response, thereby creating a feed forward loop in gene-expression. Moreover, the simultaneous gain-of-function and loss-of-function phenotypes from Rps26-deficient ribosomes can explain the pathogenesis of DBA.