Cargando…

Discovery of cell-type specific DNA motif grammar in cis-regulatory elements using random Forest

BACKGROUND: It has been observed that many transcription factors (TFs) can bind to different genomic loci depending on the cell type in which a TF is expressed in, even though the individual TF usually binds to the same core motif in different cell types. How a TF can bind to the genome in such a hi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xin, Lin, Peijie, Ho, Joshua W. K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780765/
https://www.ncbi.nlm.nih.gov/pubmed/29363433
http://dx.doi.org/10.1186/s12864-017-4340-z
Descripción
Sumario:BACKGROUND: It has been observed that many transcription factors (TFs) can bind to different genomic loci depending on the cell type in which a TF is expressed in, even though the individual TF usually binds to the same core motif in different cell types. How a TF can bind to the genome in such a highly cell-type specific manner, is a critical research question. One hypothesis is that a TF requires co-binding of different TFs in different cell types. If this is the case, it may be possible to observe different combinations of TF motifs – a motif grammar – located at the TF binding sites in different cell types. In this study, we develop a bioinformatics method to systematically identify DNA motifs in TF binding sites across multiple cell types based on published ChIP-seq data, and address two questions: (1) can we build a machine learning classifier to predict cell-type specificity based on motif combinations alone, and (2) can we extract meaningful cell-type specific motif grammars from this classifier model. RESULTS: We present a Random Forest (RF) based approach to build a multi-class classifier to predict the cell-type specificity of a TF binding site given its motif content. We applied this RF classifier to two published ChIP-seq datasets of TF (TCF7L2 and MAX) across multiple cell types. Using cross-validation, we show that motif combinations alone are indeed predictive of cell types. Furthermore, we present a rule mining approach to extract the most discriminatory rules in the RF classifier, thus allowing us to discover the underlying cell-type specific motif grammar. CONCLUSIONS: Our bioinformatics analysis supports the hypothesis that combinatorial TF motif patterns are cell-type specific. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-017-4340-z) contains supplementary material, which is available to authorized users.