Cargando…

Genomic 5-mC contents in peripheral blood leukocytes were independent protective factors for coronary artery disease with a specific profile in different leukocyte subtypes

BACKGROUND: Alterations in DNA methylation are demonstrated in atherosclerosis pathogenesis. However, changing rules of global DNA methylation and hydroxymethylation in peripheral blood leukocytes (PBLs) and different blood cell subtypes of coronary artery disease (CAD) patients are still inconclusi...

Descripción completa

Detalles Bibliográficos
Autores principales: Deng, Qianyun, Huang, Wei, Peng, Chunyan, Gao, Jiajia, Li, Zuhua, Qiu, Xueping, Yang, Na, Yuan, Bifeng, Zheng, Fang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5782379/
https://www.ncbi.nlm.nih.gov/pubmed/29410709
http://dx.doi.org/10.1186/s13148-018-0443-x
Descripción
Sumario:BACKGROUND: Alterations in DNA methylation are demonstrated in atherosclerosis pathogenesis. However, changing rules of global DNA methylation and hydroxymethylation in peripheral blood leukocytes (PBLs) and different blood cell subtypes of coronary artery disease (CAD) patients are still inconclusive, and much less is known about mechanisms underlying. RESULTS: We recruited 265 CAD patients and 270 healthy controls with genomic DNA from PBLs, of which 50 patients and 50 controls were randomly chosen with DNA from isolated neutrophils, lymphocytes and monocytes, and RNA from PBLs. Genomic 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) contents were quantified by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) assay. Genomic 5-mC contents were negatively associated with the serum total cholesterol (TC) level (P = 0.010), age (P = 0.016), and PBL classifications (P = 0.023), explaining 6.8% individual variation in controls. Furthermore, genomic 5-mC contents were inversely associated with an increased risk of CAD (odds ratio (OR) = 0.325, 95% confidence interval (CI) = 0.237~0.445, P = 2.62 × 10(− 12)), independent of PBL counts and classifications, age, sex, histories of hyperlipidemia, hypertension, and diabetes. Within-individual analysis showed a general 5-mC decrease in PBL subtypes, but significant difference was found in monocytes only (P = 0.001), accompanied by increased 5-hmC (P = 3.212 × 10(− 4)). In addition, coincident to the reduced DNMT1 expression in patients’ PBLs, the expression level of DNMT1 was significantly lower (P = 0.022) in oxidized low-density lipoprotein (ox-LDL) stimulated THP-1-derived foam cells compared to THP-1 monocytes, with decreased genomic 5-mdC content (P = 0.038). CONCLUSIONS: Global hypomethylation of blood cells defined dominantly by the monocyte DNA hypomethylation is independently associated with the risk of CAD in Chinese Han population. The importance of monocytes in atherosclerosis pathophysiology may demonstrate via an epigenetic pathway, but prospective studies are still needed to test the causality. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13148-018-0443-x) contains supplementary material, which is available to authorized users.