Cargando…

Oxygen-Sensitive Remodeling of Central Carbon Metabolism by Archaic eIF5B

The eukaryotic translation initiation factor 5B (eIF5B) is a homolog of IF2, an ancient translation factor that enables initiator methionine-tRNAi(Met) (met-tRNAi(Met)) loading on prokaryotic ribosomes. While it can be traced back to the last universal common ancestor, eIF5B is curiously dispensable...

Descripción completa

Detalles Bibliográficos
Autores principales: Ho, J.J. David, Balukoff, Nathan C., Cervantes, Grissel, Malcolm, Petrice D., Krieger, Jonathan R., Lee, Stephen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786279/
https://www.ncbi.nlm.nih.gov/pubmed/29298419
http://dx.doi.org/10.1016/j.celrep.2017.12.031
_version_ 1783295759569911808
author Ho, J.J. David
Balukoff, Nathan C.
Cervantes, Grissel
Malcolm, Petrice D.
Krieger, Jonathan R.
Lee, Stephen
author_facet Ho, J.J. David
Balukoff, Nathan C.
Cervantes, Grissel
Malcolm, Petrice D.
Krieger, Jonathan R.
Lee, Stephen
author_sort Ho, J.J. David
collection PubMed
description The eukaryotic translation initiation factor 5B (eIF5B) is a homolog of IF2, an ancient translation factor that enables initiator methionine-tRNAi(Met) (met-tRNAi(Met)) loading on prokaryotic ribosomes. While it can be traced back to the last universal common ancestor, eIF5B is curiously dispensable in modern aerobic yeast and mammalian cells. Here, we show that eIF5B is an essential element of the cellular hypoxic cap-dependent protein synthesis machinery. System-wide interrogation of dynamic translation machineries by MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) demonstrated augmented eIF5B activity in hypoxic translating ribosomes. Global translatome studies revealed central carbon metabolism, cellular hypoxic adaptation, and ATF4-mediated stress response as major eIF5B-dependent pathways. These primordial processes rely on eIF5B even in the presence of oxygen and active eIF2, the canonical recruiter of met-tRNAi(Met) in eukaryotes. We suggest that aerobic eukarya retained eIF5B/IF2 to remodel anaerobic pathways during episodes of oxygen deficiency.
format Online
Article
Text
id pubmed-5786279
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-57862792018-01-26 Oxygen-Sensitive Remodeling of Central Carbon Metabolism by Archaic eIF5B Ho, J.J. David Balukoff, Nathan C. Cervantes, Grissel Malcolm, Petrice D. Krieger, Jonathan R. Lee, Stephen Cell Rep Article The eukaryotic translation initiation factor 5B (eIF5B) is a homolog of IF2, an ancient translation factor that enables initiator methionine-tRNAi(Met) (met-tRNAi(Met)) loading on prokaryotic ribosomes. While it can be traced back to the last universal common ancestor, eIF5B is curiously dispensable in modern aerobic yeast and mammalian cells. Here, we show that eIF5B is an essential element of the cellular hypoxic cap-dependent protein synthesis machinery. System-wide interrogation of dynamic translation machineries by MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) demonstrated augmented eIF5B activity in hypoxic translating ribosomes. Global translatome studies revealed central carbon metabolism, cellular hypoxic adaptation, and ATF4-mediated stress response as major eIF5B-dependent pathways. These primordial processes rely on eIF5B even in the presence of oxygen and active eIF2, the canonical recruiter of met-tRNAi(Met) in eukaryotes. We suggest that aerobic eukarya retained eIF5B/IF2 to remodel anaerobic pathways during episodes of oxygen deficiency. 2018-01-02 /pmc/articles/PMC5786279/ /pubmed/29298419 http://dx.doi.org/10.1016/j.celrep.2017.12.031 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Ho, J.J. David
Balukoff, Nathan C.
Cervantes, Grissel
Malcolm, Petrice D.
Krieger, Jonathan R.
Lee, Stephen
Oxygen-Sensitive Remodeling of Central Carbon Metabolism by Archaic eIF5B
title Oxygen-Sensitive Remodeling of Central Carbon Metabolism by Archaic eIF5B
title_full Oxygen-Sensitive Remodeling of Central Carbon Metabolism by Archaic eIF5B
title_fullStr Oxygen-Sensitive Remodeling of Central Carbon Metabolism by Archaic eIF5B
title_full_unstemmed Oxygen-Sensitive Remodeling of Central Carbon Metabolism by Archaic eIF5B
title_short Oxygen-Sensitive Remodeling of Central Carbon Metabolism by Archaic eIF5B
title_sort oxygen-sensitive remodeling of central carbon metabolism by archaic eif5b
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786279/
https://www.ncbi.nlm.nih.gov/pubmed/29298419
http://dx.doi.org/10.1016/j.celrep.2017.12.031
work_keys_str_mv AT hojjdavid oxygensensitiveremodelingofcentralcarbonmetabolismbyarchaiceif5b
AT balukoffnathanc oxygensensitiveremodelingofcentralcarbonmetabolismbyarchaiceif5b
AT cervantesgrissel oxygensensitiveremodelingofcentralcarbonmetabolismbyarchaiceif5b
AT malcolmpetriced oxygensensitiveremodelingofcentralcarbonmetabolismbyarchaiceif5b
AT kriegerjonathanr oxygensensitiveremodelingofcentralcarbonmetabolismbyarchaiceif5b
AT leestephen oxygensensitiveremodelingofcentralcarbonmetabolismbyarchaiceif5b