Cargando…
Corticosterone Preexposure Increases NF-κB Translocation and Sensitizes IL-1β Responses in BV2 Microglia-Like Cells
Corticosterone (CORT), a critical mediator of the hypothalamus pituitary adrenal axis in rodents, is a stress hormone that is classically viewed as possessing immune-suppressive properties. CORT is now appreciated to also mediate the neuroimmune-priming effect of stress to innate-immune stimulation,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786551/ https://www.ncbi.nlm.nih.gov/pubmed/29403490 http://dx.doi.org/10.3389/fimmu.2018.00003 |
Sumario: | Corticosterone (CORT), a critical mediator of the hypothalamus pituitary adrenal axis in rodents, is a stress hormone that is classically viewed as possessing immune-suppressive properties. CORT is now appreciated to also mediate the neuroimmune-priming effect of stress to innate-immune stimulation, and hence serves as a mechanistic link to the neuroimmune involvement in stress-related disorders. However, these dichotomous actions of CORT remain poorly defined. This study investigated the conditions and concentration dependency of CORT’s actions required to prime the innate-immune system. Here, we measured the effect of CORT pretreatment on the downstream pro-inflammatory responses of BV2 mouse microglia-like cells stimulated by lipopolysaccharide (LPS). We quantified the concentration-dependent CORT-mediated attenuation and enhancement of LPS-stimulated inflammatory response. A high physiological concentration (500 nM) of CORT attenuated LPS-induced inflammatory IL-1β cytokine production in a glucocorticoid receptor-dependent manner. However, a low concentration (50 nM) of CORT increased expression and release of IL-1β in a mineralocorticoid receptor-dependent manner, with accompanied increases in NF-κB translocation and changes to related gene transcription. These results suggest that a mild elevation in CORT may cause selective adaptations in microglia-like cells to overrespond to a second immune challenge in a non-classical manner, thus partially explaining both pro- and anti-inflammatory effects of CORT reported in the literature. |
---|