Cargando…
PD-L1 checkpoint inhibition and anti-CTLA-4 whole tumor cell vaccination counter adaptive immune resistance: A mouse neuroblastoma model that mimics human disease
BACKGROUND: Adaptive immune resistance induces an immunosuppressive tumor environment that enables immune evasion. This phenomenon results in tumor escape with progression and metastasis. Programmed cell death-ligand 1 (PD-L1) expressed on tumors is thought to inhibit tumor-infiltrating lymphocytes...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5788338/ https://www.ncbi.nlm.nih.gov/pubmed/29377881 http://dx.doi.org/10.1371/journal.pmed.1002497 |
_version_ | 1783296069086478336 |
---|---|
author | Srinivasan, Priya Wu, Xiaofang Basu, Mousumi Rossi, Christopher Sandler, Anthony D. |
author_facet | Srinivasan, Priya Wu, Xiaofang Basu, Mousumi Rossi, Christopher Sandler, Anthony D. |
author_sort | Srinivasan, Priya |
collection | PubMed |
description | BACKGROUND: Adaptive immune resistance induces an immunosuppressive tumor environment that enables immune evasion. This phenomenon results in tumor escape with progression and metastasis. Programmed cell death-ligand 1 (PD-L1) expressed on tumors is thought to inhibit tumor-infiltrating lymphocytes (TILs) through programmed cell death 1 (PD1), enabling adaptive immune resistance. This study investigates the role of PD-L1 in both mouse and human neuroblastoma immunity. The consequence of PD-L1 inhibition is characterized in the context of an established whole tumor cell vaccine. METHODS AND FINDINGS: A mouse model of neuroblastoma was investigated using an Id2 knockdown whole cell vaccine in combination with checkpoint inhibition. We show that immunogenic mouse neuroblastoma acquires adaptive immune resistance by up-regulating PD-L1 expression, whereas PD-L1 is of lesser consequence in nonimmunogenic neuroblastoma tumors. Combining PD-L1 checkpoint inhibition with whole tumor cell/anti-CTLA-4 vaccination enhanced tumor cell killing, cured mice with established tumors, and induced long-term immune memory (6 months). From an evaluation of patient neuroblastoma tumors, we found that the inflammatory environment of the mouse neuroblastoma mimicked human disease in which PD-L1 expression was associated directly with TILs and lower-risk tumors. High-risk patient tumors were lacking both TILs and PD-L1 expression. Although a correlation in immunity seems to exist between the mouse model and human findings, the mouse tumor model is induced and not spontaneously occurring, and furthermore, the number of both mouse and human correlates is limited. CONCLUSIONS: This study demonstrates the role PD-L1 plays in neuroblastoma’s resistance to immunity and defines the nonredundant effect of combination checkpoint inhibition with vaccine therapy in a mouse model. High-risk, nonimmunogenic human tumors display both diminished PD-L1 expression and adaptive immune resistance. Paradoxically, high-risk tumors may be more responsive to effective vaccine therapy because of their apparent lack of adaptive immune resistance. |
format | Online Article Text |
id | pubmed-5788338 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-57883382018-02-09 PD-L1 checkpoint inhibition and anti-CTLA-4 whole tumor cell vaccination counter adaptive immune resistance: A mouse neuroblastoma model that mimics human disease Srinivasan, Priya Wu, Xiaofang Basu, Mousumi Rossi, Christopher Sandler, Anthony D. PLoS Med Research Article BACKGROUND: Adaptive immune resistance induces an immunosuppressive tumor environment that enables immune evasion. This phenomenon results in tumor escape with progression and metastasis. Programmed cell death-ligand 1 (PD-L1) expressed on tumors is thought to inhibit tumor-infiltrating lymphocytes (TILs) through programmed cell death 1 (PD1), enabling adaptive immune resistance. This study investigates the role of PD-L1 in both mouse and human neuroblastoma immunity. The consequence of PD-L1 inhibition is characterized in the context of an established whole tumor cell vaccine. METHODS AND FINDINGS: A mouse model of neuroblastoma was investigated using an Id2 knockdown whole cell vaccine in combination with checkpoint inhibition. We show that immunogenic mouse neuroblastoma acquires adaptive immune resistance by up-regulating PD-L1 expression, whereas PD-L1 is of lesser consequence in nonimmunogenic neuroblastoma tumors. Combining PD-L1 checkpoint inhibition with whole tumor cell/anti-CTLA-4 vaccination enhanced tumor cell killing, cured mice with established tumors, and induced long-term immune memory (6 months). From an evaluation of patient neuroblastoma tumors, we found that the inflammatory environment of the mouse neuroblastoma mimicked human disease in which PD-L1 expression was associated directly with TILs and lower-risk tumors. High-risk patient tumors were lacking both TILs and PD-L1 expression. Although a correlation in immunity seems to exist between the mouse model and human findings, the mouse tumor model is induced and not spontaneously occurring, and furthermore, the number of both mouse and human correlates is limited. CONCLUSIONS: This study demonstrates the role PD-L1 plays in neuroblastoma’s resistance to immunity and defines the nonredundant effect of combination checkpoint inhibition with vaccine therapy in a mouse model. High-risk, nonimmunogenic human tumors display both diminished PD-L1 expression and adaptive immune resistance. Paradoxically, high-risk tumors may be more responsive to effective vaccine therapy because of their apparent lack of adaptive immune resistance. Public Library of Science 2018-01-29 /pmc/articles/PMC5788338/ /pubmed/29377881 http://dx.doi.org/10.1371/journal.pmed.1002497 Text en © 2018 Srinivasan et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Srinivasan, Priya Wu, Xiaofang Basu, Mousumi Rossi, Christopher Sandler, Anthony D. PD-L1 checkpoint inhibition and anti-CTLA-4 whole tumor cell vaccination counter adaptive immune resistance: A mouse neuroblastoma model that mimics human disease |
title | PD-L1 checkpoint inhibition and anti-CTLA-4 whole tumor cell vaccination counter adaptive immune resistance: A mouse neuroblastoma model that mimics human disease |
title_full | PD-L1 checkpoint inhibition and anti-CTLA-4 whole tumor cell vaccination counter adaptive immune resistance: A mouse neuroblastoma model that mimics human disease |
title_fullStr | PD-L1 checkpoint inhibition and anti-CTLA-4 whole tumor cell vaccination counter adaptive immune resistance: A mouse neuroblastoma model that mimics human disease |
title_full_unstemmed | PD-L1 checkpoint inhibition and anti-CTLA-4 whole tumor cell vaccination counter adaptive immune resistance: A mouse neuroblastoma model that mimics human disease |
title_short | PD-L1 checkpoint inhibition and anti-CTLA-4 whole tumor cell vaccination counter adaptive immune resistance: A mouse neuroblastoma model that mimics human disease |
title_sort | pd-l1 checkpoint inhibition and anti-ctla-4 whole tumor cell vaccination counter adaptive immune resistance: a mouse neuroblastoma model that mimics human disease |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5788338/ https://www.ncbi.nlm.nih.gov/pubmed/29377881 http://dx.doi.org/10.1371/journal.pmed.1002497 |
work_keys_str_mv | AT srinivasanpriya pdl1checkpointinhibitionandantictla4wholetumorcellvaccinationcounteradaptiveimmuneresistanceamouseneuroblastomamodelthatmimicshumandisease AT wuxiaofang pdl1checkpointinhibitionandantictla4wholetumorcellvaccinationcounteradaptiveimmuneresistanceamouseneuroblastomamodelthatmimicshumandisease AT basumousumi pdl1checkpointinhibitionandantictla4wholetumorcellvaccinationcounteradaptiveimmuneresistanceamouseneuroblastomamodelthatmimicshumandisease AT rossichristopher pdl1checkpointinhibitionandantictla4wholetumorcellvaccinationcounteradaptiveimmuneresistanceamouseneuroblastomamodelthatmimicshumandisease AT sandleranthonyd pdl1checkpointinhibitionandantictla4wholetumorcellvaccinationcounteradaptiveimmuneresistanceamouseneuroblastomamodelthatmimicshumandisease |