Cargando…
Hyperglycemia induced testicular damage in type 2 diabetes mellitus rats exhibiting microcirculation impairments associated with vascular endothelial growth factor decreased via PI3K/Akt pathway
As an endocrine disease, type 2 diabetes mellitus (T2DM) can cause testicular damage which induces male infertility. However, the underlying mechanism is still not clear. We prove that T2DM induced testicular microcirculation impairment involves the decrease of VEGF and these actions are regulated b...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797052/ https://www.ncbi.nlm.nih.gov/pubmed/29435181 http://dx.doi.org/10.18632/oncotarget.23915 |
_version_ | 1783297599331106816 |
---|---|
author | Long, Lingli Qiu, Han Cai, Bing Chen, Ningning Lu, Xiaofang Zheng, Shuhui Ye, Xiaoxin Li, Yubin |
author_facet | Long, Lingli Qiu, Han Cai, Bing Chen, Ningning Lu, Xiaofang Zheng, Shuhui Ye, Xiaoxin Li, Yubin |
author_sort | Long, Lingli |
collection | PubMed |
description | As an endocrine disease, type 2 diabetes mellitus (T2DM) can cause testicular damage which induces male infertility. However, the underlying mechanism is still not clear. We prove that T2DM induced testicular microcirculation impairment involves the decrease of VEGF and these actions are regulated by PI3K/Akt pathway. In our study, rats were divided into three groups (n=8): control group, diabetes group and diabetes + VEGF group. Intraperitoneal injection of streptozotocin (STZ, 65mg/Kg, at 9(th) week) and daily high-fat diet were used to establish T2DM rat model. Serum glucose in diabetes group and diabetes + VEGF group obviously exceeded 13mmol/L after STZ injection. Immunohistochemical studies indicated that VEGF level in diabetes group significantly decreased. In diabetes group, testicular blood velocity and vascular area reduced evaluated by Doppler and FITC. Furthermore, atrophic testicular morphology and increasing apoptosis cells were evaluated by haematoxylin and eosin staining and TUNEL assay. In diabetes + VEGF group, the administration of VEGF (intraperitoneally, 10mg/kg) can significantly alleviated hyperglycemia-induced impairment of testes in above aspects. Finally, we used Western blot to analyze the mechanism of hyperglycemia-induced testicular VEGF decrease. The results indicated that hyperglycemia-induced VEGF decreased is regulated by PI3K/Akt pathway in Rats testicular sertoli cells (RTSCs). Together, we demonstrate that T2DM can reduce testicular VEGF expression, which results in testicular microcirculation impairment, and then induces testicular morphological disarrangement and functional disorder. These actions are triggered by PI3K/Akt pathway. Our findings provide solid evidence for VEGF becoming a therapeutic target in T2DM related male infertility. |
format | Online Article Text |
id | pubmed-5797052 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-57970522018-02-12 Hyperglycemia induced testicular damage in type 2 diabetes mellitus rats exhibiting microcirculation impairments associated with vascular endothelial growth factor decreased via PI3K/Akt pathway Long, Lingli Qiu, Han Cai, Bing Chen, Ningning Lu, Xiaofang Zheng, Shuhui Ye, Xiaoxin Li, Yubin Oncotarget Research Paper As an endocrine disease, type 2 diabetes mellitus (T2DM) can cause testicular damage which induces male infertility. However, the underlying mechanism is still not clear. We prove that T2DM induced testicular microcirculation impairment involves the decrease of VEGF and these actions are regulated by PI3K/Akt pathway. In our study, rats were divided into three groups (n=8): control group, diabetes group and diabetes + VEGF group. Intraperitoneal injection of streptozotocin (STZ, 65mg/Kg, at 9(th) week) and daily high-fat diet were used to establish T2DM rat model. Serum glucose in diabetes group and diabetes + VEGF group obviously exceeded 13mmol/L after STZ injection. Immunohistochemical studies indicated that VEGF level in diabetes group significantly decreased. In diabetes group, testicular blood velocity and vascular area reduced evaluated by Doppler and FITC. Furthermore, atrophic testicular morphology and increasing apoptosis cells were evaluated by haematoxylin and eosin staining and TUNEL assay. In diabetes + VEGF group, the administration of VEGF (intraperitoneally, 10mg/kg) can significantly alleviated hyperglycemia-induced impairment of testes in above aspects. Finally, we used Western blot to analyze the mechanism of hyperglycemia-induced testicular VEGF decrease. The results indicated that hyperglycemia-induced VEGF decreased is regulated by PI3K/Akt pathway in Rats testicular sertoli cells (RTSCs). Together, we demonstrate that T2DM can reduce testicular VEGF expression, which results in testicular microcirculation impairment, and then induces testicular morphological disarrangement and functional disorder. These actions are triggered by PI3K/Akt pathway. Our findings provide solid evidence for VEGF becoming a therapeutic target in T2DM related male infertility. Impact Journals LLC 2018-01-04 /pmc/articles/PMC5797052/ /pubmed/29435181 http://dx.doi.org/10.18632/oncotarget.23915 Text en Copyright: © 2018 Long et al. http://creativecommons.org/licenses/by/3.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Research Paper Long, Lingli Qiu, Han Cai, Bing Chen, Ningning Lu, Xiaofang Zheng, Shuhui Ye, Xiaoxin Li, Yubin Hyperglycemia induced testicular damage in type 2 diabetes mellitus rats exhibiting microcirculation impairments associated with vascular endothelial growth factor decreased via PI3K/Akt pathway |
title | Hyperglycemia induced testicular damage in type 2 diabetes mellitus rats exhibiting microcirculation impairments associated with vascular endothelial growth factor decreased via PI3K/Akt pathway |
title_full | Hyperglycemia induced testicular damage in type 2 diabetes mellitus rats exhibiting microcirculation impairments associated with vascular endothelial growth factor decreased via PI3K/Akt pathway |
title_fullStr | Hyperglycemia induced testicular damage in type 2 diabetes mellitus rats exhibiting microcirculation impairments associated with vascular endothelial growth factor decreased via PI3K/Akt pathway |
title_full_unstemmed | Hyperglycemia induced testicular damage in type 2 diabetes mellitus rats exhibiting microcirculation impairments associated with vascular endothelial growth factor decreased via PI3K/Akt pathway |
title_short | Hyperglycemia induced testicular damage in type 2 diabetes mellitus rats exhibiting microcirculation impairments associated with vascular endothelial growth factor decreased via PI3K/Akt pathway |
title_sort | hyperglycemia induced testicular damage in type 2 diabetes mellitus rats exhibiting microcirculation impairments associated with vascular endothelial growth factor decreased via pi3k/akt pathway |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797052/ https://www.ncbi.nlm.nih.gov/pubmed/29435181 http://dx.doi.org/10.18632/oncotarget.23915 |
work_keys_str_mv | AT longlingli hyperglycemiainducedtesticulardamageintype2diabetesmellitusratsexhibitingmicrocirculationimpairmentsassociatedwithvascularendothelialgrowthfactordecreasedviapi3kaktpathway AT qiuhan hyperglycemiainducedtesticulardamageintype2diabetesmellitusratsexhibitingmicrocirculationimpairmentsassociatedwithvascularendothelialgrowthfactordecreasedviapi3kaktpathway AT caibing hyperglycemiainducedtesticulardamageintype2diabetesmellitusratsexhibitingmicrocirculationimpairmentsassociatedwithvascularendothelialgrowthfactordecreasedviapi3kaktpathway AT chenningning hyperglycemiainducedtesticulardamageintype2diabetesmellitusratsexhibitingmicrocirculationimpairmentsassociatedwithvascularendothelialgrowthfactordecreasedviapi3kaktpathway AT luxiaofang hyperglycemiainducedtesticulardamageintype2diabetesmellitusratsexhibitingmicrocirculationimpairmentsassociatedwithvascularendothelialgrowthfactordecreasedviapi3kaktpathway AT zhengshuhui hyperglycemiainducedtesticulardamageintype2diabetesmellitusratsexhibitingmicrocirculationimpairmentsassociatedwithvascularendothelialgrowthfactordecreasedviapi3kaktpathway AT yexiaoxin hyperglycemiainducedtesticulardamageintype2diabetesmellitusratsexhibitingmicrocirculationimpairmentsassociatedwithvascularendothelialgrowthfactordecreasedviapi3kaktpathway AT liyubin hyperglycemiainducedtesticulardamageintype2diabetesmellitusratsexhibitingmicrocirculationimpairmentsassociatedwithvascularendothelialgrowthfactordecreasedviapi3kaktpathway |