Cargando…

Activin-dependent signaling in fibro/adipogenic progenitors causes fibrodysplasia ossificans progressiva

Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal-dominant disorder characterized by progressive and profoundly disabling heterotopic ossification (HO). Here we show that fibro/adipogenic progenitors (FAPs) are a major cell-of-origin of HO in an accurate genetic mouse model of FOP (Acv...

Descripción completa

Detalles Bibliográficos
Autores principales: Lees-Shepard, John B., Yamamoto, Masakazu, Biswas, Arpita A., Stoessel, Sean J., Nicholas, Sarah-Anne E., Cogswell, Cathy A., Devarakonda, Parvathi M., Schneider, Michael J., Cummins, Samantha M., Legendre, Nicholas P., Yamamoto, Shoko, Kaartinen, Vesa, Hunter, Jeffrey W., Goldhamer, David J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797136/
https://www.ncbi.nlm.nih.gov/pubmed/29396429
http://dx.doi.org/10.1038/s41467-018-02872-2
Descripción
Sumario:Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal-dominant disorder characterized by progressive and profoundly disabling heterotopic ossification (HO). Here we show that fibro/adipogenic progenitors (FAPs) are a major cell-of-origin of HO in an accurate genetic mouse model of FOP (Acvr1(tnR206H)). Targeted expression of the disease-causing type I bone morphogenetic protein (BMP) receptor, ACVR1(R206H), to FAPs recapitulates the full spectrum of HO observed in FOP patients. ACVR1(R206H)-expressing FAPs, but not wild-type FAPs, activate osteogenic signaling in response to activin ligands. Conditional loss of the wild-type Acvr1 allele dramatically exacerbates FAP-directed HO, suggesting that mutant and wild-type ACVR1 receptor complexes compete for activin ligands or type II BMP receptor binding partners. Finally, systemic inhibition of activin A completely blocks HO and restores wild-type-like behavior to transplanted Acvr1(R206H/+) FAPs. Understanding the cells that drive HO may facilitate the development of cell-specific therapeutic approaches to inhibit catastrophic bone formation in FOP.