Cargando…
Skeletal myosin binding protein-C isoforms regulate thin filament activity in a Ca(2+)-dependent manner
Muscle contraction, which is initiated by Ca(2+), results in precise sliding of myosin-based thick and actin-based thin filament contractile proteins. The interactions between myosin and actin are finely tuned by three isoforms of myosin binding protein-C (MyBP-C): slow-skeletal, fast-skeletal, and...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805719/ https://www.ncbi.nlm.nih.gov/pubmed/29422607 http://dx.doi.org/10.1038/s41598-018-21053-1 |
Sumario: | Muscle contraction, which is initiated by Ca(2+), results in precise sliding of myosin-based thick and actin-based thin filament contractile proteins. The interactions between myosin and actin are finely tuned by three isoforms of myosin binding protein-C (MyBP-C): slow-skeletal, fast-skeletal, and cardiac (ssMyBP-C, fsMyBP-C and cMyBP-C, respectively), each with distinct N-terminal regulatory regions. The skeletal MyBP-C isoforms are conditionally coexpressed in cardiac muscle, but little is known about their function. Therefore, to characterize the functional differences and regulatory mechanisms among these three isoforms, we expressed recombinant N-terminal fragments and examined their effect on contractile properties in biophysical assays. Addition of the fragments to in vitro motility assays demonstrated that ssMyBP-C and cMyBP-C activate thin filament sliding at low Ca(2+). Corresponding 3D electron microscopy reconstructions of native thin filaments suggest that graded shifts of tropomyosin on actin are responsible for this activation (cardiac > slow-skeletal > fast-skeletal). Conversely, at higher Ca(2+), addition of fsMyBP-C and cMyBP-C fragments reduced sliding velocities in the in vitro motility assays and increased force production in cardiac muscle fibers. We conclude that due to the high frequency of Ca(2+) cycling in cardiac muscle, cardiac MyBP-C may play dual roles at both low and high Ca(2+). However, skeletal MyBP-C isoforms may be tuned to meet the needs of specific skeletal muscles. |
---|