Cargando…

Hypoxia-induced the upregulation of stromal cell-derived factor 1 in fibroblast-like synoviocytes contributes to migration of monocytes into synovium tissue in rheumatoid arthritis

BACKGROUND: Rheumatoid arthritis (RA) is an auto-immune disease characterized by chronic inflammation of multiple joints. Hypoxia is a constant feature of synovial microenvironment in RA. Fibroblast-like synoviocytes (FLSs), which are potent effector cells in RA. It has been reported that large numb...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Ru, Yao, Yanhua, Wang, Panjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5813381/
https://www.ncbi.nlm.nih.gov/pubmed/29456830
http://dx.doi.org/10.1186/s13578-018-0210-x
Descripción
Sumario:BACKGROUND: Rheumatoid arthritis (RA) is an auto-immune disease characterized by chronic inflammation of multiple joints. Hypoxia is a constant feature of synovial microenvironment in RA. Fibroblast-like synoviocytes (FLSs), which are potent effector cells in RA. It has been reported that large numbers of monocytes are recruited to the synovium and play an important role in synovial inflammation and tissue destruction in RA. However, the mechanism is still unclear. The aim of this study is to explore the role of hypoxia microenvironment on the recruitment of monocytes and then promote the development of RA. METHODS: Rheumatoid arthritis model was constructed. Monocytes and FLSs were isolated from rheumatoid arthritis mice. RT-PCR, western blot and ELISA were used to detect the expression of SDF-1 in FLSs. CXCR4 expression in monocytes was examined by cell immunofluorescence and flow cytometry analysis. Transwell assay was performed to evaluate the potential of cell migration. RESULTS: We demonstrated that hypoxia microenvironment enhanced SDF-1 production of FLSs, which attracted the recruitment of CXCR4-expressing monocytes to the synovium and induced monocytes differentiation into tissue macrophages. Moreover, these macrophages secreted inflammatory factors including IL-6, TNF-α, IL-1β and MMP-3, which contributed to the synovial inflammation and tissue destruction in RA. CONCLUSION: The results of this study suggested that hypoxia microenvironment played an important role in enhancing SDF-1 production of FLSs. SDF-1/CXCR4 axis was involved in the recruitment of monocytes in RA synovium and it might be a possible way of inhibiting inflammation and bone erosion in RA.