Cargando…
Induction of micronuclei by four cytostatic compounds in human hematopoietic stem cells and human lymphoblastoid TK6 cells
For mutagenicity testing, primary lymphocytes or mammalian cell lines are employed. However, the true target for carcinogenic action of mutagenic chemicals may be stem cells. Since hematopoietic cancers induced by chemical agents originate at the hematopoietic stem cell (HSC) stage and since one of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820321/ https://www.ncbi.nlm.nih.gov/pubmed/29463873 http://dx.doi.org/10.1038/s41598-018-21680-8 |
Sumario: | For mutagenicity testing, primary lymphocytes or mammalian cell lines are employed. However, the true target for carcinogenic action of mutagenic chemicals may be stem cells. Since hematopoietic cancers induced by chemical agents originate at the hematopoietic stem cell (HSC) stage and since one of the side effects of chemotherapeutic cancer treatment is the induction of secondary tumors, often leukemias, HSC may be a suitable cell system. We compared the sensitivity of HSC with the genotoxicity testing cell line TK6 for chromosomal mutations. HSC were less sensitive than TK6 cells for the genotoxic effects of the model genotoxins and chemotherapeutic agents doxorubicin, vinblastine, methyl methanesulfonate (MMS) and equally sensitive for mitomycin C (MMC). However, loss of viability after mitomycin C treatment was higher in HSC than in TK6 cells. Among the factors that may influence sensitivity for genomic damage, the generation or response to reactive oxygen species (ROS) and the effectiveness of DNA damage response can be discussed. Here we show that HSC can be used in a standard micronucleus test protocol for chromosomal mutations and that their sensitivity was not higher than that of a classical testing cell line. |
---|