Cargando…

The novel dithiocarbamate, DpdtC suppresses HER2-overexpressed cancer cells by up-regulating NDRG1 via inactivation of HER2-ERK 1/2 signaling

Dithiocarbamate has been tested for its effective anti-tumor activity, but the underlying mechanism remains unclear. We previously prepared a novel diththiocarbamate derivative, DpdtC with an ability of catalase inhibition. Here, we for the first time investigated the growth inhibition effects of Dp...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yun, Liu, Youxun, Guo, Rui, Fu, Yun, Zhang, Ziheng, Zhang, Pengfei, Zhou, Pingxin, Wang, Tingting, Huang, Tengfei, Li, Xiaotong, Li, Changzheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821706/
https://www.ncbi.nlm.nih.gov/pubmed/29467385
http://dx.doi.org/10.1038/s41598-018-21768-1
Descripción
Sumario:Dithiocarbamate has been tested for its effective anti-tumor activity, but the underlying mechanism remains unclear. We previously prepared a novel diththiocarbamate derivative, DpdtC with an ability of catalase inhibition. Here, we for the first time investigated the growth inhibition effects of DpdtC on HER2-amplified cancer cells and elucidated its mechanism of action. Results showed that DpdtC exerted the potent anti-tumor effects against HER2-overexpressed SK-OV-3 and SK-BR-3 cells, especially on SK-OV-3 cells with a higher NDRG1 level, which was also confirmed in the SK-OV-3 xenograft model. Interestingly, we observed that NDRG1 was up-regulated, while membrane expression of HER2 was regressed in SK-OV-3 cells upon DpdtC treatment. In agreement, silencing endogenous NDRG1 also increased the expression of HER2 in SK-OV-3 cells, while overexpressing NDRG1 decreased HER2 expression in SK-BR-3 cells. Furthermore, our results showed the formation of the EGFR/HER2 heterodimer was attenuated and phosphorylation of ERK1/2 was inhibited in SK-OV-3 cells when treated with DpdtC. Collectively, these observations demonstrated that NDRG1 plays an important role in mediating the inhibition effects of DpdtC in HER2-overexpressed cancer cells via selective targeting of the HER2-ERK1/2 pathway. Hence, our investigation suggests that up-regulation of NDRG1 by DpdtC is a promising therapeutic approach in HER2-overexpressed cancers.