Cargando…
Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo
BACKGROUND: Chondrogenic mesenchymal stem cells (MSCs) have not yet been used to address the clinical demands of large osteochondral joint surface defects. In this study, self-assembling tissue intermediates (TIs) derived from human periosteum-derived stem/progenitor cells (hPDCs) were generated and...
Autores principales: | Mendes, L. F., Katagiri, H., Tam, W. L., Chai, Y. C., Geris, L., Roberts, S. J., Luyten, F. P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5822604/ https://www.ncbi.nlm.nih.gov/pubmed/29467016 http://dx.doi.org/10.1186/s13287-018-0787-3 |
Ejemplares similares
-
Definition of a Critical Size Osteochondral Knee Defect and its Negative Effect on the Surrounding Articular Cartilage in the Rat
por: Katagiri, H., et al.
Publicado: (2017) -
Identifying Fibroblast Growth Factor Receptor 3 as a Mediator of Periosteal Osteochondral Differentiation through the Construction of microRNA-Based Interaction Networks
por: Wells, Leah M., et al.
Publicado: (2023) -
FGFR3 in Periosteal Cells Drives Cartilage-to-Bone Transformation in Bone Repair
por: Julien, Anais, et al.
Publicado: (2020) -
Spatial regulation of bone morphogenetic proteins (BMPs) in postnatal articular and growth plate cartilage
por: Garrison, Presley, et al.
Publicado: (2017) -
Anconeus Muscle-Pedicle Bone Graft With Periosteal Coverage for Osteochondritis Dissecans of the Humeral Capitellum
por: Shimada, Kozo, et al.
Publicado: (2017)