Cargando…
Widespread transcriptional pausing and elongation control at enhancers
Regulation by gene-distal enhancers is critical for cell type-specific and condition-specific patterns of gene expression. Thus, to understand the basis of gene activity in a given cell type or tissue, we must identify the precise locations of enhancers and functionally characterize their behaviors....
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828392/ https://www.ncbi.nlm.nih.gov/pubmed/29378787 http://dx.doi.org/10.1101/gad.309351.117 |
_version_ | 1783302635281973248 |
---|---|
author | Henriques, Telmo Scruggs, Benjamin S. Inouye, Michiko O. Muse, Ginger W. Williams, Lucy H. Burkholder, Adam B. Lavender, Christopher A. Fargo, David C. Adelman, Karen |
author_facet | Henriques, Telmo Scruggs, Benjamin S. Inouye, Michiko O. Muse, Ginger W. Williams, Lucy H. Burkholder, Adam B. Lavender, Christopher A. Fargo, David C. Adelman, Karen |
author_sort | Henriques, Telmo |
collection | PubMed |
description | Regulation by gene-distal enhancers is critical for cell type-specific and condition-specific patterns of gene expression. Thus, to understand the basis of gene activity in a given cell type or tissue, we must identify the precise locations of enhancers and functionally characterize their behaviors. Here, we demonstrate that transcription is a nearly universal feature of enhancers in Drosophila and mammalian cells and that nascent RNA sequencing strategies are optimal for identification of both enhancers and superenhancers. We dissect the mechanisms governing enhancer transcription and discover remarkable similarities to transcription at protein-coding genes. We show that RNA polymerase II (RNAPII) undergoes regulated pausing and release at enhancers. However, as compared with mRNA genes, RNAPII at enhancers is less stable and more prone to early termination. Furthermore, we found that the level of histone H3 Lys4 (H3K4) methylation at enhancers corresponds to transcriptional activity such that highly active enhancers display H3K4 trimethylation rather than the H3K4 monomethylation considered a hallmark of enhancers. Finally, our work provides insights into the unique characteristics of superenhancers, which stimulate high-level gene expression through rapid pause release; interestingly, this property renders associated genes resistant to the loss of factors that stabilize paused RNAPII. |
format | Online Article Text |
id | pubmed-5828392 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-58283922018-07-01 Widespread transcriptional pausing and elongation control at enhancers Henriques, Telmo Scruggs, Benjamin S. Inouye, Michiko O. Muse, Ginger W. Williams, Lucy H. Burkholder, Adam B. Lavender, Christopher A. Fargo, David C. Adelman, Karen Genes Dev Research Paper Regulation by gene-distal enhancers is critical for cell type-specific and condition-specific patterns of gene expression. Thus, to understand the basis of gene activity in a given cell type or tissue, we must identify the precise locations of enhancers and functionally characterize their behaviors. Here, we demonstrate that transcription is a nearly universal feature of enhancers in Drosophila and mammalian cells and that nascent RNA sequencing strategies are optimal for identification of both enhancers and superenhancers. We dissect the mechanisms governing enhancer transcription and discover remarkable similarities to transcription at protein-coding genes. We show that RNA polymerase II (RNAPII) undergoes regulated pausing and release at enhancers. However, as compared with mRNA genes, RNAPII at enhancers is less stable and more prone to early termination. Furthermore, we found that the level of histone H3 Lys4 (H3K4) methylation at enhancers corresponds to transcriptional activity such that highly active enhancers display H3K4 trimethylation rather than the H3K4 monomethylation considered a hallmark of enhancers. Finally, our work provides insights into the unique characteristics of superenhancers, which stimulate high-level gene expression through rapid pause release; interestingly, this property renders associated genes resistant to the loss of factors that stabilize paused RNAPII. Cold Spring Harbor Laboratory Press 2018-01-01 /pmc/articles/PMC5828392/ /pubmed/29378787 http://dx.doi.org/10.1101/gad.309351.117 Text en © 2018 Henriques et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
spellingShingle | Research Paper Henriques, Telmo Scruggs, Benjamin S. Inouye, Michiko O. Muse, Ginger W. Williams, Lucy H. Burkholder, Adam B. Lavender, Christopher A. Fargo, David C. Adelman, Karen Widespread transcriptional pausing and elongation control at enhancers |
title | Widespread transcriptional pausing and elongation control at enhancers |
title_full | Widespread transcriptional pausing and elongation control at enhancers |
title_fullStr | Widespread transcriptional pausing and elongation control at enhancers |
title_full_unstemmed | Widespread transcriptional pausing and elongation control at enhancers |
title_short | Widespread transcriptional pausing and elongation control at enhancers |
title_sort | widespread transcriptional pausing and elongation control at enhancers |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828392/ https://www.ncbi.nlm.nih.gov/pubmed/29378787 http://dx.doi.org/10.1101/gad.309351.117 |
work_keys_str_mv | AT henriquestelmo widespreadtranscriptionalpausingandelongationcontrolatenhancers AT scruggsbenjamins widespreadtranscriptionalpausingandelongationcontrolatenhancers AT inouyemichikoo widespreadtranscriptionalpausingandelongationcontrolatenhancers AT musegingerw widespreadtranscriptionalpausingandelongationcontrolatenhancers AT williamslucyh widespreadtranscriptionalpausingandelongationcontrolatenhancers AT burkholderadamb widespreadtranscriptionalpausingandelongationcontrolatenhancers AT lavenderchristophera widespreadtranscriptionalpausingandelongationcontrolatenhancers AT fargodavidc widespreadtranscriptionalpausingandelongationcontrolatenhancers AT adelmankaren widespreadtranscriptionalpausingandelongationcontrolatenhancers |